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Abstract—Multimedia services and especially digital video is ex-
pected to be the major traffic component transmitted over commu-
nication networks [such as internet protocol (IP)-based networks].
For this reason, traffic characterization and modeling of such ser-
vices are required for an efficient network operation. The gener-
ated models can be used as traffic rate predictors, during the net-
work operation phase (online traffic modeling), or as video gen-
erators for estimating the network resources, during the network
design phase (offline traffic modeling). In this paper, an adapt-
able neural-network architecture is proposed covering both cases.
The scheme is based on an efficient recursive weight estimation
algorithm, which adapts the network response to current condi-
tions. In particular, the algorithm updates the network weights
so that 1) the network output, after the adaptation, is approxi-
mately equal to current bit rates (current traffic statistics) and
2) a minimal degradation over the obtained network knowledge
is provided. It can be shown that the proposed adaptable neural-
network architecture simulates a recursive nonlinear autoregres-
sive model (RNAR) similar to the notation used in the linear case.
The algorithm presents low computational complexity and high
efficiency in tracking traffic rates in contrast to conventional re-
training schemes. Furthermore, for the problem of offline traffic
modeling, a novel correlation mechanism is proposed for capturing
the burstness of the actual MPEG video traffic. The performance
of the model is evaluated using several real-life MPEG coded video
sources of long duration and compared with other linear/nonlinear
techniques used for both cases. The results indicate that the pro-
posed adaptable neural-network architecture presents better per-
formance than other examined techniques.

I. INTRODUCTION

T HE demands of multimedia services and especially of dig-
ital video is expected to rapidly increase in the following

years, due to the development of low-cost devices for capturing
and generating multimedia information [1], [2]. Examples of
such services include high-definition TV (HDTV), videophone
or video conferencing applications, home education, video on
demand services, content-based image/video retrieval from
large databases and video browsing applications [3]–[8]. Since
digital video demands large bandwidth requirements, several
coding algorithms have been proposed in the literature to ac-
complish efficient video compression. Among the most popular
is the MPEG standard [3], mainly due to its generic structure,
able to support a broad range of applications [9]. However,
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even in compressed domain, the bandwidth requirements of
digital video still remain high and, thus, its transmission, in a
cost effective and quality guaranteed manner, is a difficult task.
For this reason, appropriate traffic management schemes are
developed so that efficient transmission video information over
telecommunication networks, like the Internet, is accomplished
in the sense that an acceptable quality of service is guaranteed
to the users.

For implementing appropriate traffic management schemes,
statistical characterization and modeling of the transmitted in-
formation is required. In general, two cases are discriminated.
The first concerns the development of statistical models able
to 1) capture traffic statistics; 2) simulate traffic behavior; and
3) estimate network resources with high accuracy. We call this
processoffline traffic modelingin the rest of this paper, since
the generated modelsdo nottrack the actual rates, but they are
applied “offline” to simulate video traffic. Instead, the second
case regardsthe network operationphase, where the models are
applied to predict future rates based on previousactualsamples
of the traffic. The second case is calledonline traffic modeling
in the rest of this paper, since the models are applied “online”
during video transmission.

Many applications can benefit for offline–online traffic mod-
eling. In the offline case, traffic models can be used asvideo
generators, to select appropriate network parameters during the
network design phase, such as utilization, and/or number of
multiplexed sources that achieve an acceptable video quality. In
this framework, the reliability of the network can be evaluated.
For example, we can estimate the probability of refusing a new
video call or the probability of network overload. On the other
hand, online traffic models are very useful for traffic manage-
ment algorithms and congestion control schemes, which prevent
the network from possible overload. Video on demands services,
video streaming over Internet Protocol (IP) networks, wireless
transmission of video sources, telemedicine applications, home
education, or interactive television are some typical examples of
services which require such a kind of modeling.

Several video models have been proposed in the literature
dealing with either the offline or the online case. As far as
the offline modeling is concerned, the first attempts were by
Haskell and Limb who proposed and simulated statistical
multiplexing for picturephone encoders [10], [11]. A dis-
crete-state continuous-time Markov chain was proposed in [12]
for variable bit rate (VBR) teleconference streams, while in
[13] a discrete autoregressive process of order 1 [DAR(1)] has
been found more suitable for the same type of video sources,
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but of longer duration. For more complex video streams, more
complicated models have been proposed. In [14], a motion
classified autoregressive (AR) model has been presented, the
parameters of which are determined using a Markov chain
associated with different motion activity periods, in case of
a full motion VBR video stream. An -state discrete-time
discrete-state Markov model has been proposed in [15], with an
additional state to represent scene change. Scene modeling has
been adopted in [16] for video films whose the autocorrelation
functions present a long-range dependence and in [17] for VBR
broadcast video traffic. However, the aforementioned models
cannot be directly applied to MPEG coded video sources since
different coding methods result in different traffic statistics [2].
Some statistical properties and basic characteristics of MPEG
coded video steams have been recently analyzed, such as the
higher average rate of Intra frames than of Inter ones or the
periodicity existing in the autocorrelation function of MPEG
sequences [18]–[21]. A multilayer Markovian modeling of
MPEG-1 video sources followed by nonlinearities has been
recently proposed in [22].

However, all the aforementioned models cannot be applied to
the problem of online traffic modeling since they are oriented
to capturing only traffic statistics. Several works have been pro-
posed in the literature dealing with the problem of online traffic
modeling using either linear or nonlinear models. Linear ap-
proaches are mainly implemented in a recursive framework and
they are suitable for simple traffic traces [2], [23]. Instead, pre-
diction of more complicated traffic, such as video streams, is
based on nonlinear models implemented using neural networks
[24], [25]. In particular, in [24], a feedforward neural network
has been applied, the parameters of which (network weights) re-
main constant throughout transmission. As a result, the model
is not suitable for statistically varying process, like the MPEG
video traffic. In [25], a recurrent neural network has been used
for predicting a “smooth” video traffic, such as videoconfer-
encing sequences. Instead, in complicated traffic, where highly
traffic rates are encountered, the model performance is deteri-
orated. Furthermore, they are not suitable for the problem of
offline traffic modeling.

The main difficulty of modeling a nonlinear input–output re-
lationship is the estimation of the unknown nonlinear function
of the model. A simple way to perform this is to use a simpli-
fied mathematical model, such as functions of exponential type,
and then to estimate the model parameters to fit the data. How-
ever, these approaches present satisfactory results only in case
that the data follow the preassumed function type. Otherwise,
a significant deterioration of the model accuracy is observed.
Furthermore, in a complicated real-world environment it is dif-
ficulty to find a simple analytical mathematical model for de-
scribing the input–output relationship. MPEG video traffic lies
in this category due to the complexity of the coding algorithm
used to compressed video data and the complicated content of
the stream, which may include several camera effects, such as
zooming or panning or scenes of high activity. Neural networks
provide a generic framework for modeling a nonlinear function
at any accuracy by appropriately estimating network structure
and parameters (weights) [26].

Models both for online and offline traffic modeling and
prediction are presented in this paper, based on an adaptive

neural-network architecture. The proposed scheme is based on
an efficient recursive estimation of neural-network weights for
adapting network output to current conditions. In particular, the
weight updating is performed in an optimal way so that 1) the
network response is approximately equal to current conditions
(traffic rates) and 2) a minimal degradation over the previous
network knowledge is accomplished. The proposed adaptive
neural-network architecture simulates a recursive implemen-
tation of a nonlinear autoregressive model (RNAR), which is
suitable for complex and nonstationary processes, such as the
MPEG video traffic. In contrast to conventional neural-network
training algorithms, where generally require long training
periods, the computational complexity of the proposed scheme
is very small and can be applied to real-time applications,
such as the online traffic prediction of MPEG video sources.
Furthermore, it guarantees that the network response is close
to current traffic statistics, instead of conventional retraining
methods where the weight updating process can be trapped to
local minima, deteriorating the network performance.

The weight adaptation is performed at time instances, where
the model response (network performance) is not satisfactory.
These time instances are detected by an activation mechanism.
Furthermore, in case of offline traffic modeling, a novel corre-
lation mechanism is proposed so that the correlation among the
three types of frames (Intraframe , Predictive , and Bi-di-
rectionally predictive ) of the MPEG stream is retained in
the generated sequence. This is an important issue for modeling
of MPEG video sources, since it affects the burstness of video
traffic, which has a significant influence on the network re-
sources, such as the frame losses. More specifically, if the rates
of , , and frames are generated independently, severe un-
derestimate of the network resources will be accomplished since
the burstness of the actual traffic cannot be appropriately esti-
mated. Moreover, high frame rates, which mainly affect frame
loss probabilities, are further refined based on a generalized re-
gression neural network (GRNN) architecture. Experimental re-
sults and comparisons with other linear and nonlinear models
both for traffic prediction and modeling are presented to show
the good performance of the proposed scheme both as traffic
rate predictor and network resource estimator.

This paper is organized as follows: Section II refers to
the problem of online traffic modeling. In particular, in Sec-
tion II-A, the basic characteristics of MPEG video sources
are presented, while in Section II-B, a nonlinear autoregres-
sive (NAR) model based on a neural-network architecture is
described for predicting traffic rates. The weight adaptation
algorithm used to update network performance to current con-
ditions is discussed in Section III. The problem of offline traffic
modeling is addressed in Sections IV and V. Experimental
results and comparative study with other linear–nonlinear
approaches using real life MPEG-2 coded video sources are
presented in Section VI both for online and offline traffic
modeling. Finally, Section VII concludes the paper.

II. ONLINE TRAFFIC MODELING

In this section, the problem of online traffic modeling is
investigated. As mentioned above, online traffic modeling is
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Fig. 1. Traffic rate of the Source1 sequence. The first 400 frames.

useful for many applications, such as wireless video transmis-
sion, video streaming over IP networks or video on demand
services. For example, in case that high video activity is
expected, different scheduling algorithms can be applied to
avoid network congestion. Since the adopted coding algorithm
affects the statistical properties of video traffic, it is useful first
to briefly describe the general structure of the MPEG standard.

A. Basic MPEG Source Characteristics

In the MPEG standard, three different coding modes are sup-
ported: , , and . In intraframe mode, only compres-
sion in spatial direction is performed, while in predictive mode
( frames), a motion compensation scheme is applied to re-
duce the temporal redundancy. frames are coded similar to

frames apart from the fact that motion vectors are estimated
with respect to the previous or the following (or an interpolation
between them) or frame [8]. and frames are also called
Inter frames. These three types of frames are deterministically
merged, forming a group, group of picture (GOP), which is de-
fined by the distance between frames and the distance
between frames. In our case, and resulting
in the following GOP pattern IBBPBBPBBPBBI . The
dotted line of Fig. 1 depicts the frame rates of a video sequence
(Jurassic Park) coded using the MPEG-2 standard over a time
window of 400 samples. Since the three types of frames present
different statistical properties, traffic modeling is separately per-
formed for each type of frame [25], [28].

B. NARMs Based on Neural Networks

Let us denote as , the rate of -frame
stream. It should be mentioned that variableof refers to
the th sample of -stream andnot to the th sample of the ag-
gregate sequence. Due to the MPEG coding algorithm, the frame
rate of depends on the previoussamples through a non-
linear relation. Intra and Inter frames are related to the previous
frames due to the continuity of the video stream. Video con-
tent changes much slowly from frame to frame compared to the
frame rate. In addition, Inter frames are related to each other
due to motion estimation algorithm used for their encoding.
Since, in real-life, MPEG-coded video sources many compli-
cated effects are encountered, such as scene cuts, degradation
of lighting conditions, camera zooming and panning and so on,
the input–output relation is highly nonlinear [2], [9] and [20].

Fig. 2. Neural-network architecture.

Therefore, the frame rates are modeled as a NARM of order,
denoted as NAR similar to the notation used in the linear
case. The input–output relation of an NAR is given by the
following equation:

(1)

where is a nonlinear function and an independent
and identically distributed (i.i.d.) error with mean value of
and standard deviation of. In the following analysis, we omit
superscript for simplicity purposes since it is involved in all
equations.

The main difficulty in implementing a NAR model is that
function is actually unknown. However, in [27], it has
been shown that a feedforward neural network, with a tapped
delay line (TDL) filter as input, is able to implement a NAR
model, within any acceptable accuracy. Fig. 2 illustrates the
architecture of such a network, consisting of one hidden layer
of neurons, one output neuron and a TDL filter ofinput
elements, equal to the order of the model. Let us denote as

, the vectors
containing all weights , which connect the
th hidden neuron to theth input element and the biases

of the th neuron. Let us also define as ,
an vector, which contains the network weights, say,
connecting theth hidden neuron to the output neuron and as
the respective bias. Then, vector
represents all network weights and biases. These weights and
biases are also illustrated in Fig. 2 for clarity. In this case, the
network output , which provides an estimate, say of

, is given by

(2a)

with

...
...

(2b)
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where is a matrix, the columns of which corre-
spond to the weight vector , that is
and a vector-valued function, the elements of which corre-
spond to the activation functions, say , of hidden neurons.
In our case, the sigmoid function is used as . The

(3)

is a input vector containing the-previous samples
plus a unity to accommodate the bias

effect. In (2a) a linear activation function has been used for the
output neuron, since the network output approximates a contin-
uous valued signal, i.e., the frame rate of, , and frames.

Initially, a training set of samples is used to estimate the
network weights . Without loss of generality, we can assume
that the initial training set , consists of, say, pairs

(4)
The network is initially trained to minimize the mean squared

value of the error for all samples in the training set

(5)

A second-order method has been used, in our case, for
training the network based on the Marquardt–Levenberg
algorithm. This method has been selected due to its efficiency
and fast convergence, since it was designed to approach
second-order training speed without having to compute the
Hessian matrix. To further increase the generalization perfor-
mance of the network, the cross validation method has also
been applied [26].

III. RECURSIVENONLINEAR AUTOREGRESSIVEMODELING

In the previous implementation, the model parameters, i.e.,
the network weights, are considered constant throughout video
transmission. However, in dynamic environments, where the
system characteristics change through time, this assumption
deteriorates the prediction accuracy, since the model response
cannot be adapted to current conditions [29]. This is the case
of real-life MPEG coded video sources, where traffic statistics
locally fluctuate according to video activity. To face the
aforementioned difficulty, a novel recursive weight adaptation
algorithm is proposed in this paper resulting in an adaptable
neural-network architecture. In particular, the proposed scheme
optimally updates network weights to current conditions as
input–output data receive so that 1) the network response,
after the adaptation, satisfies the current conditions as much
as possible, while 2) a minimal degradation over the previous
network knowledge is provided. The neural network of Fig. 2
enhanced by the optimal weight adaptation algorithm actually
implements an RNAR model.

A. Weight Adaptation Algorithm

Let us denote by the network weightsbeforethe adapta-
tion. Let us assume that these weights have been estimated using
a training set

(6)

of pairs, which actually represent the previous network
knowledge. Vectors correspond to network inputs and have
the form of (3), while to the target outputs (i.e., is a specific
frame rate). Similarly, let denote the network weightsafter
the adaptation. Without loss of generality, we can consider that
the weight adaptation algorithm is activated at theth sample

. This means that the th sample will be estimated
using the new weights , while the has been predicted
based on the previous weights . Then, the new weights
are estimated by minimizing the following equation:

(7a)

Subject to

(7b)

where is the network output using the new weights
and the squared prediction error over the
th sample of .

Equation (7a) and (7b) indicates that the new network weights
should be estimated so that the network output, after the

adaptation, is approximately equal to the current traffic rate, i.e.,
[(7b)], while simultaneously a minimal distortion over all

samples of is provided [see (7a)].
Assuming that a small weight perturbation is sufficient for

satisfying (7a) and (7b), we have that

(8)

where represents small increments of network weights.
The effect of in (7a) and (7b) can be expressed by fol-

lowing two theorems.
Theorem 1: The effect of the small weight perturbation

to the term of (7b) (current network knowledge) is given as a
linear constraint of the form , where scalar and
vector are expressed with respect to the previous weights.

The proof of this theorem is given in Appendix A.
Theorem 2: The effect of the small weight perturbation

to the term of (7a) (previous network knowledge) is provided by
minimizing a squared convex function of the form

, where matrix is expressed with respect to the
previous weights .

The proof of Theorem 2 is given in Appendix B.
Based on the previous two theorems, we can conclude that

(7a) and (7b)yields to the following constraint minimization:

minimize

(9a)

subject to

(9b)

The expression of Matrix , vector and scalar is found in
Appendixes A and B.
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TABLE I
MAIN STEPS OF THEPROPOSEDWEIGHT ADAPTATION ALGORITHM

Equation (9a) is a convex function since it is of square form.
Furthermore, (9b) corresponds to a linear constraint. As a result,
only one minimum exists, which is the global [30]. To minimize
(9a) and (9b), the reduced gradient method has been adopted.
Table I presents the main steps of the proposed weight adapta-
tion algorithm.

B. Reduced Gradient Method

The reduced gradient method is an iterative process, which
starts from a feasible point and moves in a direction, which de-
creases the error function of (9a), while simultaneously satisfies
the constraint defined by the (9b). A point is called feasible if
it satisfies the constraint of (9b). In our case, as initial feasible
point, , the minimal distance from the origin to the con-
straint hyper-surface is used. Therefore,
is given by the following equation:

(10)

This selection is a “good” feasible solution and permits the
convergence of the algorithm within few iterations. This is very
important for online traffic prediction applications where time
is often crucial. It should be also noticed, calculation of
requires low computational load since only an inner product is
involved.

At the th iteration of the algorithm, the feasible point
is arbitrarily partitioned into groups; the first group

contains the dependent (basic) variables, while the second the
independent variables. Since, in our case, only one constraint is
available, one element of is considered as dependent
variable, while the remaining elements are considered
as independent variables. The indicates the number of all
network weights. Without loss of generality, we select the first
element of vector as dependent variable. Therefore

(11)

where is a scalar, which corresponds to the dependent
variable, while a vector which contains
the independent variables.

Based on (11) and (9b), we can express the dependent
variable with respect to the independent variables

as follows:

(12)

Scalar is the first element of vectorof (9b), i.e., the element
which corresponds to the dependent variable. On the other hand,
vector contains the remaining elements of, i.e., the elements
of independent variables. Therefore, we have that

(13)

At next iterations, the independent variables are updated as
follows:

(14)

while the dependent variable is provided by (12).
Scalar regulates the convergence rate of the weight up-
dating.

In (14), is the reduced gradient of cost functionof
(9a), i.e., the gradient with respect to the independent variables

. The reduced gradient of cost functionis given as

(15)

where scalarand vector are provided by splitting the gradient
of cost function into the dependent and independent group

(16)

The main steps of the reduced gradient method, which is used
in our case for estimating the new network weights, are summa-
rized in Table II.

C. Computational Complexity

The computational complexity of the proposed weight
adaptation algorithm, in contradiction to the generally long
training periods of neural networks, is very small. The recursive
weight estimation algorithm includes two main phases; the
initialization phase and the iteration phase. In the initialization
phase, the main parameters of the algorithm are estimated. On
the other hand, in the iteration phase, the weight updating is
performed. Let us first examine the computational cost of the
iteration phase. In this case, the main computational load is
due to the multiplication of matrix of size , by the
vector , of size required for the estimation of the
gradient of cost function [see (16)]. We recall that is the
number of all network weights. This multiplication requires

operations. However, for a typical value of (around
100 as explained in the Section VI), the product
of (16) demands few msec to be executed (5 ms on a PC 550
MHz). The computational costs of (12) and (15), which are also
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TABLE II
ALGORITHMIC FORM OF THEREDUCED GRADIENT METHOD

involved in the iteration phase, are negligible [of order ]
compared to the cost of product .

In the initialization phase, scalar, vectors and and
matrix should be calculated. Matrix is available before the
activation of the weight adaptation, since its elements depend
only on the previous network knowledge, which does not change
between the previous and the current weight updating phase [see
equations (B5)–(B9)]. Vector requires opera-
tions [see (10)] to be executed, while vector [see
Appendixes A and B], where we recall thatis the number
of hidden neurons and the number of inputs elements. Since

, the computational complexity for calculating
vectors and are very small compared to the cost of the
iteration phase. Finally, scalar, which expresses the prediction
error at the sample where the weight adaptation algorithm is ac-
tivated, is known before the weight updating process. As a re-
sult, the computational load for the initialization phase is much
smaller than the cost required for the iteration phase.

The number of iterations that the reduced gradient method
requires to derive the optimal solution is in general small. The
number is restricted by a maximum permitted time, say. is
related to , which expresses the time interval for two succes-
sive frames of the same type. For example, for one-step predic-
tion of frames, ms for and 40 ms
interframe interval (PAL system), while for and frames is

ms and 40 ms, respectively. Timeshould be smaller
than so that the prediction results can be used to control net-
work parameters. Thus, optimization of (9a) and (9b) should be
terminated within ms or equivalently the adaptation
should be stopped earlier than iterations, where de-
notes the computational time for one iteration.

D. Activation of the Weight Adaptation Algorithm

While, in theory, the weight adaptation can be performed at
every new incoming sample, in practice there is no reason to
update network weights (model parameters) in case that future
samples are predicted with high accuracy. A way for activating

Fig. 3. Weight adaptation mechanism.

the weight adaptation process is based on the prediction error
and is given by

if

if .
(17)

In case that difference exceeds a certain threshold, the
network weights (model parameters) are updated using the
aforementioned recursive algorithm . Otherwise, the
same weights are used . The value of threshold is
calculated based on the average validation error,, since this
expresses the network performance during its operation phase.
In particular, . A choice for scalar is around
1.05–1.1 meaning that the adaptation algorithm is activated
when the current prediction error is 5%–10% higher than the
average validation error . A graphical representation of the
activation mechanism is illustrated in Fig. 3.

IV. OFFLINE TRAFFIC MODELING

In this section, the problem of offline traffic modeling is in-
vestigated. Off-traffic modeling, is useful for simulating a com-
munication network and thus selecting the appropriate resources
and parameters to satisfy predetermined specifications. For ex-
ample, we can estimate the frame loss probability in case of net-
work congestion.

The neural-network structure which is described in Sec-
tion II-B is used as statistical model for the offline traffic
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Fig. 4. Autonomous mode operation.

modeling. The only difference, in this case, is that the network
inputs are theestimatedinstead of the actual data since the
latterare notavailable. Thus, (1) is written as

(18)

where

(19)

is a vector containing the-previous estimated rates plus a unity
to accommodate the bias effect. The is defined similarly
to (3). In (18), we have also omitted the superscriptfor sim-
plicity purposes. The error is an i.i.d. process and presents
the same statistics as the error of (1), i.e., it has the same
mean value and standard deviationas . The statistical
model of (18) actually operates in a recursive autonomous mode
(closed loop operation) [26], once the training procedure has
been completed. Fig. 4 illustrates a graphical representation of
the closed-loop operation. To start its recursive operation, only

initial samples are required. One common choice, for the
initials, is to be randomly selected as a sequence ofconsecu-
tive samples belonging to . In order, however, the generated
models to be accurate estimators of the network resources, two
factors should be taken into account. 1) The error should
be appropriately modeled. 2) The rates of, , and frames
should be generated in correlation with each other.

A. Error Modeling

Since, by definition, the additive error of (18) is an i.i.d.
process, the variables , for different , represent statisti-
cally independent error samples that follow the same pdf. This
error pdf can be estimated by the distribution of the difference
between the actual data and the predicted ones using, for
example, the estimated NAR model, over all samples of set

. Based on several experiments of VBR MPEG coded
video sequences, it can be shown that a Gaussian distribution
provides an accurate approximation of the error pdf. Similar
conclusions have been also drawn for other VBR video streams,
which have been coded using, however, different compression
schemes [12]. Two parameters are required for determining the
Gaussian pdf of ; the mean value of and the variance of

. Since presents the same statistics as and using
(1), it can be shown that

(20a)

Fig. 5. Correlation mechanism forI; P; andB frame streams.

(20b)

where is the expectation operator. Estimation of ,
, , , is provided

using data from set .
In the following analysis for convenience, we normalized the

error so that it has zero mean and variance equal to one.
Thus, the normalized error, say , is related to by

(21)

B. MPEG Video Source Construction

The generated sequences for each-stream by the neural-net-
work model, , are deterministically merged, according
to the and values, to form the aggregate video sequence.
However, if uncorrelated errors , or equivalently ,
are used as filter inputs to signal [(18)], the aggregate
MPEG sequence will contain uncorrelated, and compo-
nents, since are generated independently. However, there
is correlation between the actual rates of, , and frames
mainly due to motion estimation algorithm and the continuity
of the actual video traffic. As a result, independent generation
of , , and frames results in significant underestimate of
the network resources, though the models follow the statistics
of each -stream, since they cannot capture the burstness of the
actual video traffic [20], [21].

One way to correlate , for different , is to correlate their
respective errors, due to the fact that they follow the same pdf.
Particularly, a reference error is generated, following the Gauss
distribution with zero mean and variance equal to one. Then,
the errors of , , and frames are generated with respect to
this error. A simple approach is to consider as reference error,
the due to the fact that frames constitute the majority
within a GOP. In this case, the errors ofand frames are
correlated with as illustrated in Fig. 5. Let us denote as

the number of frames within a GOP period (in our case
). Then, the normalized error of frames, is

related to through the following equation:

(22)
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Fig. 6. Proposed scheme for offline traffic modeling.

where denotes the second frame within a GOP and
the respective error. Equation (22) indicates thatand

frames are fed with the same errors. Then, the correlation of
frames with the other frames is achieved through the equa-

tion (18). In Fig. 5, (22) is depicted using the decimator filter
after shifting the reference error by one lag [the input–output is
given by ].

With a similar procedure, the error is created. In par-
ticular, let us denote as the number of frames within a
GOP. In our case, where and , . Then,

is split into error sequences, denoted by ,
, each of which corresponds to the error of

the th frame, say , within a GOP. The error is re-
lated to the reference error as follows:

with

for for and for
(23)

where, without loss of generality, (23) has been expressed in
the case of . Equation (23) indicates that correlation be-
tween and frames is achieved by generating, , and

frames with the same errors as, , and frames. Cor-
relation between and frames is indirectly achieved through
(22) and (23). Equation (23) is also illustrated in Fig. 5 using
the decimator filter and shifting the reference error by
one (for ), three (for ) and five (for ) lags respectively. In
this figure, the error synthesis module is responsible for merging
the errors into a common link to generate the total error

.

V. IMPROVEMENT OFOFFLINE TRAFFIC MODELING ACCURACY

The VBR MPEG video traffic presents highly fluctuated bit
rates, especially for Inter frames in case of high motion pe-
riods, where the motion compensation algorithm usually fails
[9]. However, the learning algorithm, used to train the neural
network, is in fact based on a least squares fitting [minimiza-
tion of (5)]. Consequently, if we imposed the network to track
the abrupt changes of frame rates, belonging to the training set
with high accuracy, this would give noisy results for data out-
side the training set (overfitting) by overemphasizing the abrupt
rate changes [27]. Thus, underestimate of high frame rates ap-
pears which further leads to underestimate of network resources
since high frame rates usually overload the network buffers. To

increase the model accuracy, especially at high rates, the algo-
rithm presented in the previous section is improved as follows.

Let us assume that the neural-network training has been com-
pleted, and thus the estimates of are available. Let
us also form the set containing the time indexes of high traffic
rates for the , , or frames over data of set , that is,

with (24)

where is an appropriate threshold expressed as a function of
the mean value and standard deviation of signal

(25)

where stands for the mean value of while for
the standard deviation, estimating over all samples of the set

. Parameter regulates how far from the mean value the
threshold is. Small values of indicate that almost all rates,
which are greater than the respective average, are considered as
high ones. On the contrary, large values ofimply that only
few frames rates are regarded as high ones. Usually, the value

is chosen to be around 1.5 for all frame types.
Using the index set , the sequences and

are created. Then, the pairs , for
all can be considered as points of the two-dimensional
space, defining a nonlinear function , which maps the
estimated sample to the actual value . Estimation of
the unknown function can be provided through a nonlinear
least squares fitting based on a generalized regression neural
network (GRNN) which is often used for function approxima-
tion [26].

Training a GRNN is straightforward. In particular, the
neurons of the first layer are equal to the number of pairs

, with radial basis activation functions,
while the respective weights are equal to the estimated data,

, . The second layer consists of one neuron, with
linear activation function, whose respective weights are equal
to the actual data . Then, the network output ,
is the dot product of the first-layer neuron outputs and the
weights of the second layer, after being normalized by the sum
of first layer outputs. Fig. 6 illustrates the proposed scheme,
incorporating all aforementioned stages for offline modeling as
they are presented in Sections IV and V.
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Fig. 7. Actual and predicted traffic rate using the proposed model over a time window of 250 frames forI frames. (a) Source3. (b) Source4.

Fig. 8. Actual and predicted traffic rate using the proposed model over a time window of 250 frames forP frames. (a) Source3. (b) Source4.

VI. EXPERIMENTAL RESULTS

In the following, the performance of the proposed model is
evaluated both for online and offline traffic modeling. In our
simulations, four long duration VBR MPEG-2 coded video se-
quences (each approximately of 45 min) have been used; two
films and two TV series. For clarity of presentation, we call the
first film and the first TV series as Source1 and Source2, while
the second film and second TV series as Source3 and Source4
respectively, in the rest of this paper.

The 20% of data of Source1 and Source2 have been used to
train the network; 75% of them are used as training data, while
the rest 25% as validation data. The model accuracy is evaluated
using data of Source3 and Source4, which are not included in
the training set. The network inputs have been normalized so
that they have zero mean and variance of one. The order of the
model is selected to be 6, 9, 12 for the, and frame stream
respectively. Furthermore, one hidden layer has been selected
for the network with eight neurons.

A. Online Traffic Modeling

Fig. 7(a) and (b) illustrate the traffic rate offrames (a time
window of 250 frames) versus the frame number for Source3
and Source4, respectively. The solid line corresponds to the ac-
tual data, while the dotted line refers to the predicted data. In this

case, the weight adaptation is performed each time a prediction
error greater than 10% of the average validation error has been
encountered. Similarly, Fig. 8 presents the traffic prediction for

frames of Source3 and Source4, while Fig. 9 forframes of
the same sequences. In all cases, the prediction accuracy is very
high, even at time instances of highly fluctuated frame rates.
An alternative way to indicate the good performance of the pro-
posed model as traffic-rate predictor is to plot the predicted data
versus the actual ones [31]. Fig. 11(a)–(c) present the results for
the three types of frames (, and of Source3. In these fig-
ures, the solid line corresponds to perfect fit. It can be seen that
the plotted data are close to the line of perfect fit, meaning that
the proposed model is good predictor of traffic rates.

In some cases, however, it is useful to predict video activity,
instead of the actual traffic. This is due to the fact that in a VBR
transmission mode, periods of high-activity overload the net-
work lines, while periods of low activity empty the network
lines. The average frame rate over a GOP period, say ,
can be considered as an estimator of video activity for an MPEG
stream and thus signal is very useful for network man-
agement. The signal results from the rate of the aggregate
MPEG sequence as

(26)
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Fig. 9. Actual and predicted traffic rate using the proposed model over a time window of 250 frames forB frames. (a) Source3. (b) Source4.

Fig. 10. Actual and predicted traffic rate using the proposed model over a time window of 250 frames for the video activity [x (n) signal]. (a) Source3. (b)
Source4.

Fig. 11. Actual data versus the predicted ones for Source3. (a)I frames. (b)P frames. (c)B frames. (d) Video activity [x (n) signal].

where signal corresponds to the aggregate video traffic.
The , for . The solid line of Fig. 1 shows the
respective samples of signal for the sequence of Source1.
As is observed, signal is less bursty than the aggregate
video traffic but follows video activity, in the sense that it in-
creases (decreases) whenever the rates of Intra and Inter frames
on average increase (decrease).

The prediction results of signal are depicted in
Fig. 10(a) and (b) for Source3 and Source4, respectively, over
a time window of 500 frames, while in Fig. 11(d) the predicted
traffic rates of are plotted versus the actual rates. The

highest prediction accuracy is observed for since it is
much smoother signal compared to, , and frame streams.

An objective measure for evaluating the prediction accuracy
is to compute the relative prediction error with respect to the
actual data ,

(27)

where is the total number of samples for the-stream and
, the th sample of the actual and predicted signal.
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TABLE III
RELATIVE PREDICTION ERROR

Table III presents the relative prediction error for the three frame
streams over all samples of Source3 and Source4, using the pro-
posed model. In this table, the relative prediction error for the
signal is also illustrated. As is observed the prediction
performance is very satisfactory since in the worst case the rel-
ative error is less than 3.12%.

However, Intra frames are predicted more accurate than Inter
frames, while signal appears the highest prediction ac-
curacy. This is due to the fact that Intra frames appears smaller
fluctuation rate than Inter frames, while is the smoothest
signal, since it is generated as the average of all types of frames
within a GOP period. The lower fluctuation rate of Intra frames
than that of Inter ones is due to the coding algorithm. In partic-
ular, Intra frames are coded only in spatial direction while Inter
frames both in spatial and the temporal one. For this reason, the
average frame rate of Inter frames is smaller than of Intra ones.
However, in cases of high video activity the motion estimation
algorithm fails and Inter frames (and ) are coded similarly
to the Intra ones. Thus, the Inter frame’s traffic rate is highly
fluctuated compared to the Intra ones. Furthermore,frames
present the lowest average rate since their motion vectors are
bidirectionally estimated with respect to the previous or the fol-
lowing (or an interpolation between them)or frame. This
is verified in Figs. 7–9, where it is observed that the rate for
frames ranges from about 10 Mbits/s to 35 Mbits/s (3.5 times),
while for and from 3 Mbits/s to 22 Mbits/s (7.33 times)
and from 0.8 Mibts/s to 11 Mbits/s (13.75 times).

Due to the coding algorithm, frames are generated without
respect to any previous frame and thus, they present lower cor-
relation compared to Inter frames. As a result, one would expect
to present higher prediction error than that of Inter frames. How-
ever, the fluctuation rate of Inter frames is much higher than of
intra ones, which mainly affect the prediction accuracy. Instead,
within a simple scene with low video activity, Inter frames can
be predicted more accurately verifying the previous observation.

As we have stated in Section III-C, the number of iterations
for updating neural-network weights depends on a maximum
permitted time which should be smaller than time interval

between two successive frames of the same type so that the
traffic management algorithms exploit the prediction results by
regulating, for example, if necessary, network parameters. The
effect of time on the prediction accuracy is illustrated
in Fig. 12 for , , and frames. As is observed, the predic-
tion performance deteriorates as time becomes shorter.
frames present the greatest variation and therefore present the

Fig. 12. Effect of the prediction performance with respect to the maximum
completion timeT .

main bottleneck for the online traffic prediction; a) they should
be predicted in within a short time interval (less than 40 ms)
and b) they are highly fluctuated and thus it is more difficult
to be predicted. However, as presented in Fig. 12, even for
frames, the prediction performance remains satisfactory though
a small number of iterations is allowed. This is due fact that
the weight updating algorithm starts, according to equation (10),
from an initial “good” feasible solution, which provides a min-
imal modification of the network weights, instead of a random
one. Therefore, even within few iterations, a satisfactory solu-
tion is obtained.

1) Comparison With Other Linear and Nonlinear Tech-
niques: In the following, the performance of the proposed
model as traffic rate predictor is compared with three other
methods. The first uses a recursive implementation of a
linear AR model [23], the second a recurrent neural-network
architecture as in [25] and finally the third a feedforward
neural network without the weight updating mechanism [24].
Table III presents the results obtained for the, frame
streams and signal , using the three aforementioned
methods. As is observed, the proposed model provides the
best prediction performance in all cases, while the recurrent
neural-network approach [25] the second one. This is due to
the fact that the first method uses a linear model (although its
recursive implementation) to predict the MPEG video traffic,
while the third does not update the network weights during
prediction. To clearly illustrate the differences of the proposed
method from the second best technique, i.e., the recurrent
neural-network approach [25], a rate by rate comparison is
depicted in Fig. 13(a)–(c) over a time window of the first 125
frames as in Figs. 7–9 in case of, and frame stream of
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Fig. 13. Rate by rate comparison of the proposed model with the method of [25] over a time window of 125 frames of Source3 in case of (a)I frames, (b)P
frames, (c)B frames, and (d) of signalx (n).

Source3. Similarly, Fig. 13(d) presents the comparison between
the proposed method and the recurrent one for signal
over the same time window as in Fig. 10.

A recurrent neural-network models an NARMA , where
is the order of the autoregressive term whilethe order of the

moving average component. Instead, the proposed model im-
plements an adaptable feedforward neural-network architecture
and thus simulates an NAR system in an recursive mode, de-
noted as RNAR. The MA component of a recurrent architecture
cannot be removed by setting the order , since it stems
from the feedback between the output and input [27]. The re-
current neural-network model cannot be efficiently track highly
fluctuated rates as it happens in the examined VBR MPEG video
sources. This is clearly noticed in Fig. 13. Particularly, we ob-
served that the prediction accuracy of the signal, which
is the average over a GOP period, and thus presents the lowest
fluctuation, is more accurate than that of Inter and Intra frames.
Additionally, the highest prediction error is noticed for the
frames (see Table III) since they are highly fluctuated. Instead,
the proposed adaptable neural-network model tracks well the
traffic rates even at highly fluctuated rates, as shown in Table III.
The adopted recursive algorithm trusts the current traffic data
as much as possible meaning that the model is adapted to the
current traffic statistics as indicated by the constraint [equation
(9b)], while simultaneously provides a minimum degradation
of the previous network knowledge. In contrast, the recurrent
model adapts network weights at each sample toward the oppo-
site direction of the current prediction error. Furthermore, the re-

current approach presents an unstable behavior especially when
applied for long traffic periods.

B. Offline Traffic Modeling

In this section, the off line traffic modeling is evaluated using
data of Source3 and Source4 which have been excluded from
the training set.

Fig. 14 presents the frame loss probability, obtained from the
proposed traffic model (dotted line), versus buffer size, along
with those obtained by varying the rate of real data of Source3

1% for multiplexed video sources. It should be men-
tioned that in this figure, the buffer size is expressed in time units
(ms), which correspond to the maximum delay that the buffer
causes. In Fig. 14, we observe that the traffic model provides a
good approximation of frame loss probability at two different
degrees of utilization, 75%, and 85%. In this figure, we also de-
pict the frame loss probability obtained by applying two other
methods. The first uses linear AR models for the, , and
frames. This is mentioned as “Linear Case” in the figure. In the
second approach, frame loss probability is provided without im-
plementing the algorithm, described in Section V (mentioned as
“Model without GRNN” in the figure). As is observed, the linear
case significantly underestimates frame loss probability, espe-
cially at large buffer size. Instead, the second method results in
a slight underestimate of frame losses, since high traffic rates
of , , and frames cannot be estimated with high accuracy.
Fig. 15 presents the performance of the proposed model for data
of Source4 within a 1% uncertainty, in case of mul-
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Fig. 14. Frame loss probability versus buffer size using data of Source3 in case ofN = 20 sources. (a)U = 75%. (b)U = 85%.

Fig. 15. Frame loss probability versus buffer size using data of Source4 in case of 20 multiplexed video sources. (a)U = 75%. (b)U = 85%.

TABLE IV
COMPARISON OFFRAME LOSSES FOR THEACTUAL DATA OF SOURCE3 AND THE PROPOSEDMODEL AT DIFFERENTBUFFERSIZES AND UTILIZATION DEGREES

tiplexed sources. As can be seen, the loss rates provided by the
model fall within the range of 1% uncertainty for almost all
delays.

Table IV depicts a source by source comparison of frame
losses for the actual data of Source3 and the proposed model
for delays, 44 ms and 59 ms, in case of % and 29 ms

and 35 ms in case of %. It is observed that the model
approximates well not only the aggregate traffic intensity, but
also the traffic characteristics of each of the first 15 individual
multiplexed sources. In this table, the periodicity effect is also
evident [13]. According to this phenomenon, although all mul-
tiplexed sources present the same statistical properties, they are
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Fig. 16. (a) Frame loss probability versus buffer size of Source3 forU = 75%. (b) Delay versus utilization for 10 frame losses. (c) Delay versus number of
multiplexed forU = 75%.

characterized by different loss rates. A video source that starts
its transmission a short time after another source, will present
much more losses since frames from this source are more likely
to face larger queue lengths than frames arriving earlier from
other sources.

The effect of the number of multiplexed sources on network
resources is depicted in Fig. 16(a). In this figure, frame losses
are plotted versus buffer size for three different number of multi-
plexed sources (15, 20, and 25) and utilization of 75% using data
of Source3, along with those obtained by the proposed model.
We observe that loss rates decay more rapidly as the number
of multiplexed sources increase. Furthermore, the model pro-
vides a very good approximation of frame losses in all cases.
The delay versus utilization for different number of multiplexed
sources is depicted in Fig. 16(b) for the same video sequence,
when the frame loss rate is equal to 10. In this figure, we have
depicted the delay provided by the model for the same loss rate.
Fig. 16(c) shows the delay versus the number of multiplexed
sources for three different loss rates10 , 10 and 10 in
case of %. In the same figure, data obtained from the
proposed model are also depicted. From the previous results,
we can see that delay and frame losses are regulated by utiliza-
tion and number of multiplexed sources.

VII. CONCLUSION

The demands of multimedia services and especially of digital
video rapidly increase in the recent years. Since video data
demand large bandwidth requirements, even in compressed
domain, traffic characterization and modeling of such kind of
services is an important issue for efficient network operation. In
this paper, an adaptive neural-network architecture is proposed
for traffic prediction and modeling of MPEG coded video
sources. The scheme is based on an efficient recursive weight
estimation algorithm, which adapts the network response to
current conditions. In particular, the weights are updated so that
1) the network output, after the adaptation, is approximately
equal to the current data (traffic rates) and 2) a minimal
degradation over the obtained network knowledge is provided.
It has been shown that the proposed adaptive neural-network
architecture simulates a RNAR model.

The proposed recursive weight adaptation is performed in
an efficient and cost effective manner in contrast to other con-

ventional training schemes (like the backpropagation), which
usually induce high computational load. This is an important
issue for online applications, such as traffic prediction of MPEG
frame rates. The proposed adaptive neural-network scheme has
been applied for traffic prediction (online modeling) and offline
modeling of real-life MPEG coded video sources. In particular,
for the problem of online traffic modeling, experimental results
and comparative study with other linear and nonlinear traffic
models have shown the superiority of the proposed scheme. For
the problem of offline traffic modeling, the proposed algorithm
have been tested in a wide range of utilizations, number of mul-
tiplexed sources and delay, and the results have shown that the
scheme is very robust and provides better performance com-
pared to traditional linear “offline” traffic models.

Other types of video coding schemes than the examined
MPEG one can also be modeled by the proposed adaptive
neural-network architecture. In this case, the model order and
the learning set used to initially train the network should be
changed. Instead, the proposed adaptive algorithm remains the
same. It should be also mentioned that the process of applying
three traffic models to each of three types of frames of the
MPEG coding scheme (, , and ) is not valid for other
coding schemes since in this case different frame types are
presented.

APPENDIX A
PROOF OFTHEOREM 1

Let us define by , the vectors containing
the network weights and biases, which connect theth hidden
neuron to the input layerbeforeandafter the weight adaptation
respectively. Then, matrices can be formed as follows:

and

(A1)

similarly to matrix of Section II-B. Let us also define by
, the vectors which contain the network weights

connecting theth hidden neuron to the output neuronbefore
andafter the weight adaptation respectively. Similarly,,
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correspond to the biases of the output neuron. Since (7a) and
(7b) is valid for all network weights, it can be derived that

(A2)

where , and are small increments of the respective
network weights.

Thus, (3) can be written as

(A3)
where subscript and refer to beforeand after the weight
adaptation, respectively.

Application of a first-order Taylor series expansion to (A3)
yields to

(A4)

where is the gradient of and can be expressed by the
following diagonal matrix

(A5)

where

(A6)

indicate the gradient of the hidden neuron outputs, assuming that
the sigmoid are used as activation functions.

Since the network output is approximately equal to the cur-
rent bit rate, i.e., , from (2a) and (A4) is
expressed as follows:

(A7)

Combining, (A7) and (A4), and ignoring the second order terms,
we can find that

(A8)

Equation (A7) can be rewritten as

(A9)

where

(A10)

is the prediction error before the weight adaptation, while vector
is produced by reordering the right term of (A7) for all net-

work weights

(A11)

Equation (A11) is a linear equation with respect to weights
increment and vector can be estimated by simply identi-
fying the terms of the right and left hand of (A11). Particularly,
we have that

(A12)

with and denoting a vector formed
by stacking up all rows of matrix .

APPENDIX B
PROOF OFTHEOREM 2

The effect of perturbation in (6a) can be modeled by [32]

(B1)

where is the sensitivity of the squared error of the
th element of , [(6a)] and

an vector con-
taining the sensitivities for all elements of . The sensitivity
of errors can be expressed as

(B2)
Using (B2) for all elements in , , vector can
be written as

(B3)

where is the Jacobian matrix of errors with respect to
network weights

...
...

...
...

(B4)

The derivatives involved in (B4) are calculated as follows.
Let us first define as the difference between the target

output and the network output for theth element of set (old
information) in case that the old weights are used

(B5)

Let us also recall that

(B6)

is the derivative of theth hidden neuron output when vector
is fed as input to the network using the old weights,. Dif-
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ferentiating (6a) with respect to network weights we have
that

(B7)

where is the th element of vector . We recall that
refers to the network weight that connects theth hidden neuron
with the th input element. The equation (6a) with respect to
network weights and , we find that

(B8)

(B9)

Using (B1) and (B3), minimization of (6a) is equivalent to
minimization of

(B10)
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