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Abstract—Multimedia services and especially digital video is ex- even in compressed domain, the bandwidth requirements of
pected to be the major traffic component transmitted over commu-  digital video still remain high and, thus, its transmission, in a
EicattLQ” networkts [?flﬂchﬁs intterr)et tPrOtOCZ' (Isz-blgsed fnetwt?rks]. cost effective and quality guaranteed manner, is a difficult task.

or tnis reason, traific characterization and modeling of such ser- . . -

vices are required for an efficient network operation. The gener- For this reason, apprqprlate traff!c T"a”"’.‘gem.e”t schgmes are
ated models can be used as traffic rate predictors, during the net- developed so that efficient transmission video information over
work operation phase (online traffic modeling), or as video gen- telecommunication networks, like the Internet, is accomplished
erators for estimating the network resources, during the network in the sense that an acceptable quality of service is guaranteed
design phase (offline traffic modeling). In this paper, an adapt- tg the users.

able neural-network architecture is proposed covering both cases. For implementing appropriate traffic management schemes
The scheme is based on an efficient recursive weight estimation L A - ; 7
algorithm, which adapts the network response to current condi- Stat'St'.Cal F:haract.erlzatlon and modeling of the trqnsm't.ted In-
tions. In particular, the algorithm updates the network weights formation is required. In general, two cases are discriminated.
so that 1) the network output, after the adaptation, is approxi- The first concerns the development of statistical models able
mately equal to current bit rates (current traffic statistics) and  to 1) capture traffic statistics; 2) simulate traffic behavior; and
2) a minimal degradation over the obtained network knowledge 3y estimate network resources with high accuracy. We call this

is provided. It can be shown that the proposed adaptable neural- . . .o . .
network architecture simulates a recursive nonlinear autoregres- procesoffline traffic modelingin the rest of this paper, since

sive model (RNAR) similar to the notation used in the linear case. the generated modetio nottrack the actual rates, but they are
The algorithm presents low computational complexity and high applied ‘offline” to simulate video traffic. Instead, the second
efficiency in tracking traffic rates in contrast to conventional re-  case regardhe network operatiophase, where the models are
training schemes. Furthermore, for the problem of offline traffic  gpplied to predict future rates based on previatsialsamples
modeling, a novel correlation mechanism is proposed for capturing of the traffic. The second case is calledline traffic modeling

the burstness of the actual MPEG video traffic. The performance . th t of thi - th del fadine’
of the model is evaluated using several real-life MPEG coded video In the rest of this paper, since the models are applad

sources of long duration and compared with other linear/nonlinear during video 'trar?smission. . ' . _
techniques used for both cases. The results indicate that the pro-  Many applications can benefit for offline—online traffic mod-

posed adaptable neural-network architecture presents better per- eling. In the offline case, traffic models can be usedideo

formance than other examined techniques. generatorsto select appropriate network parameters during the
network design phasesuch as utilization, and/or number of
|. INTRODUCTION multiplexed sources that achieve an acceptable video quality. In

HE demands of multimedia services and especially of di 1is framework, the reliability of the network can be evaluated.
ital video is expected to rapidly increase in the following " €xample, we can estimate the probability of refusing a new

years, due to the development of low-cost devices for capturifig€0 call or the probability of network overload. On the other
and generating multimedia information [1], [2]. Examples and, onlme traffic models are very useful for trafflc_manage-
such services include high-definition TV (HDTV), videophon&entalgorithms and congestion control schemes, which prevent
or video conferencing applications, home education, video H?fanetworkfr_om possible overload. Video on demands services,
demand services, content-based imagelvideo retrieval friff€0 Streaming over Internet Protocol (IP) networks, wireless
large databases and video browsing applications [3]-[8]. Sinfk@nsmission of video sources, telemedicine applications, home
digital video demands large bandwidth requirements, sevefgucation, orinteractive television are some typical examples of
coding algorithms have been proposed in the literature to &&/Vices which require such a kind of modeling. _
complish efficient video compression. Among the most popular S€veral video models have been proposed in the literature
is the MPEG standard [3], mainly due to its generic structurg?al'”g with either the offline or the online case. As far as

able to support a broad range of applications [9]. Howevép,e offine modeling is concerned, the first attempts were by
Haskell and Limb who proposed and simulated statistical

multiplexing for picturephone encoders [10], [11]. A dis-
Manuscript received March 12, 2001; revised May 29, 2002. crete-state continuous-time Markov chain was proposed in [12]
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but of longer duration. For more complex video streams, moneural-network architecture. The proposed scheme is based on
complicated models have been proposed. In [14], a motian efficient recursive estimation of neural-network weights for
classified autoregressive (AR) model has been presented, dldapting network output to current conditions. In particular, the
parameters of which are determined using a Markov chaiveight updating is performed in an optimal way so that 1) the
associated with different motion activity periods, in case afetwork response is approximately equal to current conditions
a full motion VBR video stream. Anl/-state discrete-time (traffic rates) and 2) a minimal degradation over the previous
discrete-state Markov model has been proposed in [15], with aetwork knowledge is accomplished. The proposed adaptive
additional state to represent scene change. Scene modelingriteasal-network architecture simulates a recursive implemen-
been adopted in [16] for video films whose the autocorrelatidation of a nonlinear autoregressive model (RNAR), which is
functions present a long-range dependence and in [17] for VBRIitable for complex and nonstationary processes, such as the
broadcast video traffic. However, the aforementioned modd#PEG video traffic. In contrast to conventional neural-network
cannot be directly applied to MPEG coded video sources sintaining algorithms, where generally require long training
different coding methods result in different traffic statistics [2]periods, the computational complexity of the proposed scheme
Some statistical properties and basic characteristics of MPEGvery small and can be applied to real-time applications,
coded video steams have been recently analyzed, such asstieh as the online traffic prediction of MPEG video sources.
higher average rate of Intra frames than of Inter ones or tRarthermore, it guarantees that the network response is close
periodicity existing in the autocorrelation function of MPEQo current traffic statistics, instead of conventional retraining
sequences [18]-[21]. A multilayer Markovian modeling ofnethods where the weight updating process can be trapped to
MPEG-1 video sources followed by nonlinearities has beéwmcal minima, deteriorating the network performance.
recently proposed in [22]. The weight adaptation is performed at time instances, where

However, all the aforementioned models cannot be appliedttee model response (network performance) is not satisfactory.
the problem of online traffic modeling since they are orientefihese time instances are detected by an activation mechanism.
to capturing only traffic statistics. Several works have been prBurthermore, in case of offline traffic modeling, a novel corre-
posed in the literature dealing with the problem of online traffitation mechanism is proposed so that the correlation among the
modeling using either linear or nonlinear models. Linear aghree types of frames (Intrafranig), Predictive( P), and Bi-di-
proaches are mainly implemented in a recursive framework arettionally predictive( B)) of the MPEG stream is retained in
they are suitable for simple traffic traces [2], [23]. Instead, préhe generated sequence. This is an important issue for modeling
diction of more complicated traffic, such as video streams, &6 MPEG video sources, since it affects the burstness of video
based on nonlinear models implemented using neural netwotksffic, which has a significant influence on the network re-
[24], [25]. In particular, in [24], a feedforward neural networksources, such as the frame losses. More specifically, if the rates
has been applied, the parameters of which (network weights) o¢-7, P, and B frames are generated independently, severe un-
main constant throughout transmission. As a result, the modelrestimate of the network resources will be accomplished since
is not suitable for statistically varying process, like the MPE@e burstness of the actual traffic cannot be appropriately esti-
video traffic. In [25], a recurrent neural network has been usedated. Moreover, high frame rates, which mainly affect frame
for predicting a “smooth” video traffic, such as videoconfertoss probabilities, are further refined based on a generalized re-
encing sequences. Instead, in complicated traffic, where higlglsession neural network (GRNN) architecture. Experimental re-
traffic rates are encountered, the model performance is detetits and comparisons with other linear and nonlinear models
orated. Furthermore, they are not suitable for the problem lofth for traffic prediction and modeling are presented to show
offline traffic modeling. the good performance of the proposed scheme both as traffic

The main difficulty of modeling a nonlinear input—output rerate predictor and network resource estimator.
lationship is the estimation of the unknown nonlinear function This paper is organized as follows: Section Il refers to
of the model. A simple way to perform this is to use a simplithe problem of online traffic modeling. In particular, in Sec-
fied mathematical model, such as functions of exponential tygimn 11-A, the basic characteristics of MPEG video sources
and then to estimate the model parameters to fit the data. Hawe presented, while in Section 1I-B, a nonlinear autoregres-
ever, these approaches present satisfactory results only in cige (NAR) model based on a neural-network architecture is
that the data follow the preassumed function type. Otherwisigscribed for predicting traffic rates. The weight adaptation
a significant deterioration of the model accuracy is observeslgorithm used to update network performance to current con-
Furthermore, in a complicated real-world environment it is difditions is discussed in Section Ill. The problem of offline traffic
ficulty to find a simple analytical mathematical model for demodeling is addressed in Sections IV and V. Experimental
scribing the input—output relationship. MPEG video traffic liesesults and comparative study with other linear—nonlinear
in this category due to the complexity of the coding algorithrapproaches using real life MPEG-2 coded video sources are
used to compressed video data and the complicated contenprefsented in Section VI both for online and offline traffic
the stream, which may include several camera effects, suchmasdeling. Finally, Section VII concludes the paper.
zooming or panning or scenes of high activity. Neural networks
provide a generic framework for modeling a nonlinear function
at any accuracy by appropriately estimating network structure Il. ONLINE TRAFFIC MODELING
and parameters (weights) [26].

Models both for online and offline traffic modeling and In this section, the problem of online traffic modeling is
prediction are presented in this paper, based on an adaptiweestigated. As mentioned above, online traffic modeling is
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Fig. 1. Traffic rate of the Sourcel sequence. The first 400 frames. x(n-1)=[x(n-1) x(n-2) ..x(n-p) 117

useful for many applications, such as wireless video transmfgg 2. Neural-network architecture.
sion, video streaming over IP networks or video on demand
services. For example, in case that high video activity fsherefore, the frame rates are modeled as a NARM of gitler
expected, different scheduling algorithms can be applied denoted as NAR°®) similar to the notation used in the linear
avoid network congestion. Since the adopted coding algorithgaise. The input—output relation of an NAR) is given by the
affects the statistical properties of video traffic, it is useful firsollowing equation:
to briefly describe the general structure of the MPEG standard.

z°(n) = ¢°(z°(n — 1), 2°(n - 2), ..., 2°(n — p%))
A. Basic MPEG Source Characteristics +e°(n), cel{l, P,B} (1)

In the MPEG standard, three different coding modes are sup- _ . _ .
ported: (1), (P), and(B). In intraframe mode, only compres-Whereg“(-) is a nonlinear function ane(n) an independent
sion in spatial direction is performed, while in predictive mog@nd identically distributed (i.i.d.) error with mean value,of
(P frames), a motion compensation scheme is applied to A1d standard deviation 6f. In the following analysis, we omit
duce the temporal redundandy.frames are coded similar to SUPErscript for simplicity purposes since it is involved in all
P frames apart from the fact that motion vectors are estimatéguations. o _ _
with respect to the previous or the following (or an interpolation The main difficulty in implementing a NAR model is that
between themj or P frame [8]. P and B frames are also called function g(-) is actually unknown. However, in [27], it has
Inter frames. These three types of frames are deterministica¥§en shown that a feedforward neural network, with a tapped
merged, forming a group, group of picture (GOP), which is g&élay Ilne_ ('!'DL) filter as input, is able to mplement a NAR
fined by the distancé between/ frames and the distandel mod_el, within any acceptable accuracy. Fig. 2 |IIu_strates the
betweenP frames. In our casey/ = 3 and L = 12 resulting architecture of such a network, consisting of one hidden layer
in the following GOP pattern. . IBBPBBPBBPBBI .... The ©Of I neurons, one output neuron and a TDL filterjefnput
dotted line of Fig. 1 depicts the frame rates of a video sequerfl@ments, equal to the order of the model. Let us denote as
(Jurassic Park) coded using the MPEG-2 standard over a tifie= (i1~ wi p1]",i=1,2, ...l the(p+1) x 1 vectors
window of 400 samples. Since the three types of frames presgfftaining all weightsv; i, k = 1, ..., p which connect the
different statistical properties, traffic modeling is separately pefth hidden neuron to theth input element and; .., the biases

formed for each type of frame [25], [28]. of the sth neuron. Lgt us alsq define &s= [v; vy - v]T,
an!/ x 1 vector, which contains the network weights, say

B. NARMs Based on Neural Networks connecting theéth hidden neuron to the output neuron and'as
the respective bias. Then, vector= [w] wi ---w] v 6]

Let us denote as“(n), the rate ofc € {I, P, B}-frame o asents all network weights and biases. These weights and
stream. It should be mentioned that variablef +°(n) refersto  yiages are also illustrated in Fig. 2 for clarity. In this case, the

thenth sample ot-stream andhot to thenth sample of the ag- atwork outputy, (), which provides an estimate, sagn) of
gregate sequence. Due to the MPEG coding algorithm, the fram)

rate ofz°(n) depends on the previop$ samples through a non-

linear relation. Intra and Inter frames are related to the previous yw(x(n —1)) = &(n) = v’ -u(x(n—1)) +6 (2a)
frames due to the continuity of the video stream. Video con-

tent changes much slowly from frame to frame compared to thgth

frame rate. In addition, Inter frames are related to each other T

due to motion estimation algorithm used for their encoding. uy(x(n — 1)) fwi -x(n—1))
Since, in real-life, MPEG-coded video sources many complixy(x(n — 1)) = : -
cated effects are encountered, such as scene cuts, degradation '

of lighting conditions, camera zooming and panning and so on, w(x(n — 1)) fwi-x(n—1))
the input—output relation is highly nonlinear [2], [9] and [20]. =f(WT .x(n—1)) (2b)

is given by
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whereW is a(p + 1) x [ matrix, the columns of which corre- A. Weight Adaptation Algorithm

spond to the weight vectaw;, that isW = [w1 wy -~ w] Let us denote byv, the network weightbeforethe adapta-

andf() a vector-valued function, the elements of which corrgjop, | ot us assume that these weights have been estimated using
spond to the activation functions, s#y-), of hidden neurons. 5 training set

In our case, the sigmoid function is usedfds). The
Sb = {(th d1)7 DI (t]Vb7 d]\[b)} (6)

x(n—1)=[z(n—1)-z(n—p) 1T (3) of N, pairs, which actually represent the previous network
knowledge. Vectors; correspond to network inputs and have
isa(p+ 1) x 1 input vector containing the-previous samples the form of (3), whiled; to the target outputs (i.e., is a specific
z(n—1), ..., z(n — p) plus a unity to accommodate the biagrame rate). Similarly, let, denote the network weighgster
effect. In (2a) a linear activation function has been used for tHee adaptation. Without loss of generality, we can consider that
output neuron, since the network output approximates a contiie weight adaptation algorithm is activated at ftle sample
uous valued signal, i.e., the frame ratelof, andB frames. (k). This means that thgk + 1)th sample will be estimated
Initially, a training set of N samples is used to estimate thé!sing the new weights,, while thez (k) has been predicted
network weightsw. Without loss of generality, we can assum&ased on the previous weights,. Then, the new weighte,
that the initial training sef,;;, consists of, sayK pairs are estimated by minimizing the following equation:

Ny Ny
Sinit = {(x(p), #(p+ 1)), -0, (K +p=1), 2(K +p))}. Wo=argmin Dy =33 (yw(ts) —d:)* =33 Dis.

4)
The network is initially trained to minimize the mean squared (72)
value of the error for all samples in the training Sgt; Subject to
o Yw, (X(k = 1)) = @(k) = z(k) (7b)
TP . . .
_1 . 2 wherey.,, (+) is the network output using the new weights
C=2 n;rl {z(n) = 2(n)} andD; , = (yw(t;) —d;)? the squared prediction error over the
b ith sample ofS;,.

) E+p ) Equation (7a) and (7b) indicates that the new network weights
=3 Z {z(n) — yw(x(n —1))}". (5) w, should be estimated so that the network output, after the
n=p+1 adaptation, is approximately equal to the current traffic rate, i.e.,

A second-order method has been used, in our case, %ﬁ) [(7b)], Wh"e smultaneouslyamlnlmal distortion over all

o samples of5; is provided [see (7a)].

training the network based on the Marquardt-Levenberg ; . L -
Assuming that a small weight perturbation is sufficient for

algorithm. This method ha_s bee_n selected (_1ue to its emc'eng%ﬁisfying (7a) and (7b), we have that
and fast convergence, since it was designed to approac

second-order training speed without having to compute the W, = W, + Aw (8)

Hessian matrix. To further increase the generalization perfejhereAw represents small increments of network weights.
mance of the network, the cross validation method has alsorpe effect of\w in (7a) and (7b) can be expressed by fol-
been applied [26]. lowing two theorems.
Theorem 1: The effect of the small weight perturbatidyw
[ll. RECURSIVENONLINEAR AUTOREGRESSIVEMODELING to the term of (7b) (current network knowledge) is given as a
. . : . linear constraint of the forrh = a7 - Aw, where scalab and
In the previous implementation, the model parameters, i.€,

the network weights, are considered constant throughout vid\{eéo(lz_tora are expre_ssed with r_esp_ect t(.) the previous weights
he proof of this theorem is given in Appendix A.

transmission. Hovyeyer, in dynamic enV|r.onment.s, where theTheorem 2: The effect of the small weight perturbatidw

system characteristics change through time, this assumptjon . ) .

X L . 0 the term of (7a) (previous network knowledge) is provided by
deteriorates the prediction accuracy, since the model response. ~.". . T
minimizing a squared convex function of the fofy2)Aw" -

cannot be adapted to current conditions [29]. This is the ¢ L .
of real-life MPEG coded video sources, where traffic statisti?s% '.J ' AW’. where matrixJ is expressed with respect to the
evious weightsw,,.

. . o r
locally flug:tuate fau;cordlng to video a.ct|V|ty._ To face thé) The proof of Theorem 2 is given in Appendix B.
aforementioned difficulty, a novel recursive weight adaptation )

X . ) . S Based on the previous two theorems, we can conclude that
algorithm is proposed in this paper resulting in an adapta . : . S

. . a) and (7b)yields to the following constraint minimization:

neural-network architecture. In particular, the proposed scheme” ™
optimally updates network weights to current conditions d8Inimize
input—output data receive so that 1) the network response, E :%AWT JT.7 . Aw (9a)
after the adaptation, satisfies the current conditions as m"%ﬁjbject to
as possible, while 2) a minimal degradation over the previous T
network knowledge is provided. The neural network of Fig. 2 b=a"-Aw. (9b)
enhanced by the optimal weight adaptation algorithm actually The expression of Matrid, vectora and scalab is found in
implements an RNAR model. Appendixes A and B.
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TABLE |
MAIN STEPS OF THEPROPOSEDWEIGHT ADAPTATION ALGORITHM

Summary of the Proposed Recursive Estimation of Network Weights

Estimate matrix J using the derivatives (B7-B9).
. Estimate vector a using the equations (12) and (13).
3. Apply the reduced gradient method and find the optimal Aw which minimizes the cost function

E= -;—AWT 5 A By [equation (9a)] subject to the constraint b =a” - Aw [equation (9b)].

N

4. Update the current network weights Wy as follows W, = w, + Aw [equation (8)].

Equation (9a) is a convex function since it is of square fornscalam? is the first element of vecter of (9b), i.e., the element
Furthermore, (9b) corresponds to a linear constraint. As a resulhich corresponds to the dependent variable. On the other hand,
only one minimum exists, which is the global [30]. To minimizevectoral contains the remaining elementsgf.e., the elements
(9a) and (9b), the reduced gradient method has been adoptédndependent variables. Therefore, we have that
Table | presents the main steps of the proposed weight adapta-

p (.17
tion algorithm. a= [a (a”) ] . (13)
B. Reduced Gradient Method At next iterations, the independent variables are updated as
' follows:
The reduced gradient method is an iterative process, which
starts from a feasible point and moves in a direction, which de- Aw!(m + 1) = Aw!(m) — v(m)r(m) (14)

creases the error function of (9a), while simultaneously satisfie?]

. . D . :
the constraint defined by the (9b). A point is called feasible lle the dependent variablaw™(m) is provided by (12).

. e : o - >calary(m) regulates the convergence rate of the weight up-
it satisfies the constraint of (9b). In our case, as initial feaSIbdeating

point, Aw(0), the minimal distance from the origin to the con- . . :

straint hyper-surface—a” - Aw = 0is used. Therefore\w (0) In (.14)’ r(m) is Fhe re'duced gradient o]‘ cost func'uﬂhof_

is given by the following equation: (9a), i.e., the gradient with respect to the independent variables
Aw!(m). The reduced gradient of cost functiéhis given as

b-a 1

(10) r(m)=d—- —c-a’ (15)

Aw(0) = 5

al -a’

This selection is a “good” feasible solution and permits thehere scalarand vectod are provided by splitting the gradient
convergence of the algorithm within few iterations. This is vergf cost functionF into the dependent and independent group
important for online traffic prediction applications where time

T T
is often crucial. It should be also noticed, calculation\of (0) VE =K Aw(m) = [c d']". (16)
requires low computational load since only an inner product iSThe main steps of the reduced gradient method, which is used
involved. in our case for estimating the new network weights, are summa-

At the mth iteration of the algorithm, the feasible pointizeq in Table II.
Aw(m) is arbitrarily partitioned into groups; the first group
contains the dependent (basic) variables, while the second theComputational Complexity
independent variables. Since, in our case, only one constraint i

. ) . The computational complexity of the proposed weight
avaylable, one element qi'w(m) is considered as dep?ndengdaptation algorithm, in contradiction to the generally long
variable, while the remaining/,, — 1 elements are considered

. ) o training periods of neural networks, is very small. The recursive
as independent variables. Th&, indicates the number of all gp y

. . X . weight estimation algorithm includes two main phases; the
network weights. Without loss of generality, we select the flr%,x 9 9 P ’

element of vecton as dependent variable. Therefore itialization phase and the iteration phase. In the initialization
w(m) P ' phase, the main parameters of the algorithm are estimated. On

the other hand, in the iteration phase, the weight updating is
performed. Let us first examine the computational cost of the
eiltﬁration phase. In this case, the main computational load is
due to the multiplication of matriX of size N,, x N,,, by the
vector Aw, of size N,, x 1 required for the estimation of the

Based on (11) and (9b), we can express the dependgmdient of cost functio’ [see (16)]. We recall thaV,, is the

variable AwP (m) with respect to the independent variabIeEumber of all network weights. This multiplication requires
O(N2) operations. However, for a typical value &f, (around
Aw!(m) as follows: : v

Aw(m) = [AwP(m) Aw!(m)T]" (11)

whereAw?® (m) is a scalar, which corresponds to the depend
variable, whileAw? (m) a(N,, — 1) x 1 vector which contains
the independent variables.

w

100 as explained in the Section VI), the prodict Aw(m)
b— (a7 Aw!(m +1) of (16) demands few msec to be executed (ms on a PC 550

Aw®(m+1) = 5 - (12)  MHz). The computational costs of (12) and (15), which are also

a
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TABLE I
ALGORITHMIC FORM OF THE REDUCED GRADIENT METHOD

Reduced Gradient Method

Initialization Phase

a using equation (14).

1. Find the initial feasible solution Aw(0) = T
al .a

2. Setm=0
Iteration Phase

3. if m>Tp /T, then stop.

4. Calculate the gradient of (9a) using equation (20). Set the first element of the gradient as the scalar
¢ and the remaining elements as vector d.

5. Partition vector a into two groups as in equation (17)

6. Estimate the reduced gradient using equation (19)

7. Update the independent network weights as in equation (18)

8. Calculate the dependent weights using equation (16)

9. Set m=m+l

10. If the reduced gradient is zero r(m) =0, or m >Tp /T, then stop. Otherwise goes to step 4.

involved in the iteration phase, are negligible [of or@¥mV,, )] Weight Adaptation
compared to the cost of produkt - Aw(im).

In the initialization phase, scalayvectorsa andAw(0) and x(n-1) /lygural
matrix K should be calculated. Matri is available before the —
activation of the weight adaptation, since its elements depend

only on the previous network knowledge, which does not change
between the previous and the current weight updating phase [see
equations (B5)—(B9)]. VectoAw(0) requiresO(N,,) opera-
tions [see (10)] to be executed, while vecwiO(l - p) [see
Appendixes A and B], where we recall thais the number _ . ) )
of hidden neurons ang the number of inputs elements. Sincé'd > Weight adaptation mechanism.

O(l-p) =~ O(N,,), the computational complexity for calculating ) , ) .
vectorsAw(0) anda are very small compared to the cost of thdhe v_velght adaptation process is based on the prediction error
iteration phase. Finally, scalarwhich expresses the prediction‘ijd is given by
error at the sample where the weight adaptation algorithm is ac- 1, if D=|z(n)—z(n)|>T
tivated, is known pefore the welght_u.p_dgtmg process. .As are- = {07 it D = [2(n) — a(n)| < T.
sult, the computational load for the initialization phase is much
smaller than the cost required for the iteration phase. In case that differenc® exceeds a certain threshdld the

The number of iterations: that the reduced gradient method'etwork weights (model parameters) are updated using the
requires to derive the optimal solution is in general small. Trforementioned recursive algorithfl = 1). Otherwise, the
number is restricted by a maximum permitted time, Bay, is Same weights are usédl = 0). The value of threshold’ is
related tol’p, which expresses the time interval for two succe§alculated based on the average validation effor,since this
sive frames of the same type. For example, for one-step predigpresses the network performance during its operation phase.
tion of I framesTp = 12%40 = 480 ms forL, = 12 and 40 ms In particular,7” = A x E,. A choice for scalar\ is around
interframe interval (PAL system), while fd? and B frames is 1.05-1.1 meaning that the adaptation algorithm is activated
Tp = 80 ms and 40 ms, respectively. Tirfie should be smaller when the current prediction error is 5%—10% higher than the
thanTp, so that the prediction results can be used to control néerage validation errak;,. A graphical representation of the
work parameters. Thus, optimization of (9a) and (9b) should B&tivation mechanism is illustrated in Fig. 3.
terminated within7,, < Tp ms or equivalently the adaptation

17

should be stopped earlier thdh/ T, iterations, wherdl’, de- IV. OFFLINE TRAFFIC MODELING

notes the computational time for one iteration. In this section, the problem of offline traffic modeling is in-
vestigated. Off-traffic modeling, is useful for simulating a com-

D. Activation of the Weight Adaptation Algorithm munication network and thus selecting the appropriate resources

and parameters to satisfy predetermined specifications. For ex-
While, in theory, the weight adaptation can be performed aimple, we can estimate the frame loss probability in case of net-
every new incoming sample, in practice there is no reasonwork congestion.
update network weights (model parameters) in case that futuréfhe neural-network structure which is described in Sec-
samples are predicted with high accuracy. A way for activatiripn [I-B is used as statistical model for the offline traffic
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modeling. The only difference, in this case, is that the netwofig. 5. Correlation mechanism fé; P, and B frame streams.
inputs are theestimatedinstead of the actual data since the
latterare notavailable. Thus, (1) is written as V¥ =E {x(n)2} — 2. E{z(n)i(n)}
Z(n) = yw (X(n — 1)) + r(n) (18) + E{i(n)z(n)} — p? (20Db)
where whereE{-} is the expectation operator. Estimationfofz(n)},
A 2 A N N . .
%(n—1) = [i(n—1)--i(n—p) 1]” (19) E{i(n)}, E{z(n)*}, E{z(n)2(n)}, E{Z(n)&(n)} is provided

using data from sef,;;.

is a vector containing the-previous estimated rates plus a unity !N the following analysis for convenience, we normalized the
to accommodate the bias effect. Brie:—1) is defined similarly €Torr(n) so that it has zero mean and variance equal to one.
to (3). In (18), we have also omitted the superscrifdr sim-  1hus, the normalized error, sayn), is related ta-(n) by

plicity purposes. The errof(n) is an i.i.d. process and presents

the same statistics as the eregn) of (1), i.e., it has the same e(n) = (r(n) — u)/b. (21)
mean value: and standard deviationase(n). The statistical
model of (18) actually operatesina recursn(e_autonomous mog_e MPEG Video Source Construction
(closed loop operation) [26], once the training procedure has

been completed. Fig. 4 illustrates a graphical representation off Ne generated sequences for eastream by the neural-net-
the closed-loop operation. To start its recursive operation, o§prk model,{i“(n)}, are deterministically merged, according
p initial samples are required. One common choice, forjtheto the L and M values, to form the aggregate video sequence.
initials, is to be randomly selected as a sequengeasinsecu- However, if uncorrelated errors’(n), or equivalently=“(n),

tive samples belonging t6..;;. In order, however, the generatecBre used as filter inputs to signaf(n) [(18)], the aggregate
models to be accurate estimators of the network resources, MBEG sequence will contain uncorrelated?” and B compo-
factors should be taken into account. 1) The erfar) should Nents, since<(n) are generated independently. However, there
be appropriately modeled. 2) The rates/of?, and B frames is correlation between the actual rateslofP, and B frames

should be generated in correlation with each other. mainly due to motion estimation algorithm and the continuity
of the actual video traffic. As a result, independent generation
A. Error Modeling of I, P, and B frames results in significant underestimate of

Since, by definition, the additive error of (18) is an i i.gthe network resources, though the models follow the statistics
process, the variablegn), for differentn, represent statisti- of eache-stream, since they cannot capture the burstness of the

cally independent error samples that follow the same pdf. TH§tual video traffic [20], [21]. _ _
error pdf can be estimated by the distribution of the difference ON€ Way to correlate(n), for differentc, is to correlate their
between the actual data and the predicted ones using, fgFPECtVe errors, due to the fgct that they follow t.he same pdf.
example, the estimated NAR model, over all samples of é%@ru_culgrly, a_reference erroris gengrated, following the Gauss
Sinit. Based on several experiments of VBR MPEG coddiistribution with zero mean and variance equal to one. Then,
video sequences, it can be shown that a Gaussian distribufigf €'ors off, P, and B frames are generated with respect to
provides an accurate approximation of the error pdf. Similf#is €rror. A simple approach is to consider as reference error,
conclusions have been also drawn for other VBR video strearfi€ " (n) due to the fact thaB frames constitute the majority
which have been coded using, however, different compressigfihin @ GOP. 'g this case, the errors bfand P> frames are
schemes [12]. Two parameters are required for determining ffrelated withe™(n) as illustrated in Fig. 5. Let us denote as
Gaussian pdf of (n); the mean value ofi and the variance of Np the number of3 frames within a GOP period (in our case

b2. Sincer(n) presents the same statisticseda) and using VB = 8)- Then, the normalized error df frames,’(n) is
(1), it can be shown that related to=2(n) through the following equation:

p=E{z(n)} — E{i(n)} (20a) el(n) =e® (Npxn+1)=e"(n) (22)
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Fig. 6. Proposed scheme for offline traffic modeling.

where B, denotes the secon® frame within a GOP and increase the model accuracy, especially at high rates, the algo-
eB2(n) the respective error. Equation (22) indicates thand rithm presented in the previous section is improved as follows.
B, frames are fed with the same errors. Then, the correlation ofLet us assume that the neural-network training has been com-
I frames with the otheB frames is achieved through the equapleted, and thus the estimat&gn) of 2:¢(n) are available. Let
tion (18). In Fig. 5, (22) is depicted using the decimator filter us also form the sdt® containing the time indexes of high traffic
after shifting the reference error by one lag [the input—outputiiates for thel, P, or B frames over data of sét,;;, that is,
given byy(n) = z(n) | M = z(n x M)].

With a similar procedure, the erref’(n) is created. In par- ¢ — ne{p+1,p+2, ..., K+p}in)>Q°}
ticular, let us denote a&p the number ofP frames within a withc € {1, P, B} (24)
GORP. In our case, whete = 12 andM = 3, Np = 3. Then,
eP(n) is split into Np error sequences, denoted by (n)
i = 1,2,..., Np, each of which corresponds to the error o
theith P frame sayP;, within a GOP. The errot? (n) is re-
lated to the reference erref (n) as follows:

hereQ°¢ is an appropriate threshold expressed as a function of
he mean value and standard deviation of sigtiéh)

Qc = mS + nca_c (25)

efi(n) = e® (N *n+ «)

with .
wherem® stands for the mean value @f(n) while o¢ for

. . ) the standard deviation, estimating over all samples of the set
— — — 7 — — K —

a=1lfori=1, a=3fori=2 and o=>5fori=3 Sinit.- Parameten® regulates how far from the mean value the

where, without loss of generality, (23) has been expr(sgg,edthﬁesmld is. Small values of indicate that almost all rates,
the case ofV = 3. Equation (23) indicates that correlation beW ich are greater than the respective average, are considered as

high ones. On the contrary, large values)6fimply that only
t}\'!vifgrgezr\lgitﬁ I:}angfn'j ;?2'2’;; %y gaenn dejgat:‘lfgr’nsé’ ?;2?. few frames rates are regarded as high ones. Usually, the value
reglation betweerP and] frames is i'ndi?éctly ac6:hieved t.hrough77 's chosen to be around 1.5 for all frame types.
Usmg the index setl“, the sequence$i“(j)};er- and
(22) and (23). Equation (23) is also illustrated in Fig. 5 usm? () are created. Then, the paifs©(j), =°(j)), for
the decimator filter] and shifting the reference errof (n gers P

all j e 1¢ can be considered as points of the two-dimensional
one (forP;), three (forP,) and five (forP3) lags respectwely In space, defining a nonlinear functiol(-), which maps the

oo s o o Bimted samp ()0 he acul vl ). Esimationcl

P fhe unknown functiork(-) can be provided through a nonlinear

e (n). least squares fitting based on a generalized regression neural
network (GRNN) which is often used for function approxima-
tion [26].

The VBR MPEG video traffic presents highly fluctuated bit Training a GRNN is straightforward. In particular, the
rates, especially for Inter frames in case of high motion paeurons of the first layer are equal to the number of pairs
riods, where the motion compensation algorithm usually fai{g“(7), z°(j)), 7 € I° with radial basis activation functions,
[9]. However, the learning algorithm, used to train the neuralhile the respective weights are equal to the estimated data,
network, is in fact based on a least squares fitting [minimiza<(j), j € I¢. The second layer consists of one neuron, with
tion of (5)]. Consequently, if we imposed the network to tracknear activation function, whose respective weights are equal
the abrupt changes of frame rates, belonging to the training t®the actual data“(j)j € 7°. Then, the network output’(n),
with high accuracy, this would give noisy results for data outs the dot product of the first-layer neuron outputs and the
side the training set (overfitting) by overemphasizing the abrupeights of the second layer, after being normalized by the sum
rate changes [27]. Thus, underestimate of high frame rates apfirst layer outputs. Fig. 6 illustrates the proposed scheme,
pears which further leads to underestimate of network resour@@sorporating all aforementioned stages for offline modeling as
since high frame rates usually overload the network buffers. Tleey are presented in Sections IV and V.

V. IMPROVEMENT OFOFFLINE TRAFFIC MODELING ACCURACY
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VI. EXPERIMENTAL RESULTS case, the weight adaptation is performed each time a prediction

) error greater than 10% of the average validation error has been
In the following, the performance of the proposed model {s,countered. Similarly, Fig. 8 presents the traffic prediction for
evaluated both for online and offline traffic modeling. In oU fr3mes of Source3 and Source4, while Fig. 9/foframes of
simulations, four long duration VBR MPEG-2 coded video S§pe same sequences. In all cases, the prediction accuracy is very
quences (each approximately of 45 min) have been used; Jgh even at time instances of highly fluctuated frame rates.
films and two TV series. For clarity of presentation, we call thg, 5jternative way to indicate the good performance of the pro-
first film and the first TV series as Sourcel and Source2, while,coq model as traffic-rate predictor is to plot the predicted data

the second film and second TV series as Source3 and SourGgg s the actual ones [31]. Fig. 11(a)—(c) present the results for
respectively, in the rest of this paper. the three types of frameg,(P and B) of Source3. In these fig-
The 20% of data of Sourcel and Source2 have been usegfos the solid line corresponds to perfect fit. It can be seen that
train the network; 75% of them are used as training data, Whilgs piotted data are close to the line of perfect fit, meaning that
the rest 25% as validation data. The model accuracy is evaluagd proposed model is good predictor of traffic rates.
using data of Source3 and Source4, which are not included i, some cases, however, it is useful to predict video activity,
the training set. The network inputs have been normalized $Rtead of the actual traffic. This is due to the fact that in a VBR
that they have zero mean and variance of one. The order of {igsmission mode, periods of high-activity overload the net-
modelis selected tobe 6, 9, 12 for theP, andB frame stream \yrk Jines, while periods of low activity empty the network

respectively. Furthermore, one hidden layer has been seleqigds The average frame rate over a GOP period,$&y:)

for the network with eight neurons. can be considered as an estimator of video activity for an MPEG
stream and thus signaf (n) is very useful for network man-
agement. The signaf (n) results from the rate of the aggregate
MPEG sequence’ (n) as

(Z (o - i)> / :

A. Online Traffic Modeling

Fig. 7(a) and (b) illustrate the traffic rate 6fframes (a time
window of 250 frames) versus the frame number for Source3
and Source4, respectively. The solid line corresponds to the ac-

LEG n)=
tual data, while the dotted line refers to the predicted data. In this (n)

(26)
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where signal:*'(n) corresponds to the aggregate video traffichighest prediction accuracy is observed #6t(n) since it is
Thezf(n) = 0, for n < 0. The solid line of Fig. 1 shows the much smoother signal compareditoP, andB frame streams.
respective samples of signéf (n) for the sequence of Sourcel. An objective measure for evaluating the prediction accuracy
As is observed, signat®(n) is less bursty than the aggregatés to compute the relative prediction error with respect to the
video traffic but follows video activity, in the sense that it inactual datar©,

creases (decreases) whenever the rates of Intra and Inter frames

on average increase (decrease). 1 Y 12e(n) — ¢
Je Ine ( ) - o EC:—ZMXNO 27)
The prediction results of signat“(n) are depicted in Ne —~ z¢(n)
Fig. 10(a) and (b) for Source3 and Source4, respectively, over

a time window of 500 frames, while in Fig. 11(d) the predictedhere N¢ is the total number of samples for thestream and

traffic rates ofz“(n) are plotted versus the actual rates. The°(n), #¢(n) thenth sample of the actual and predicted signal.



160 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 1, JANUARY 2003

TABLE Il
RELATIVE PREDICTION ERROR

Relative Prediction Error
Source3 Source4
I P B xG(n) I P B xG (n)
Sequences Frgme Fr‘?me Fr:me Signal Fr?me Fritme Fr:me Signal
(%) (%) (%) %) (%) (%) (%) %)
The proposed 1.12 1.89 2.81 0.34 1.35 2.28 3.12 0.42
Model
Recurrent NN 7.12 8.55 10.02 1.35 8.98 10.05 10.65 1.52
Feedforward NN 9.36 10.87 11.88 2.22 10.16 11.46 12.26 2.44
Linear Model 12.58 13.42 14.75 3.75 12.68 14.35 14.98 4.01

Table Il presents the relative prediction error for the three frame !
streams over all samples of Source3 and Source4, using the pro-
posed model. In this table, the relative prediction error for the
signalz®(n) is also illustrated. As is observed the prediction
performance is very satisfactory since in the worst case the rel-
ative error is less than 3.12%.
However, Intra frames are predicted more accurate than Inter
frames, while signat“(n) appears the highest prediction ac- ]
curacy. This is due to the fact that Intra frames appears smaller 'm;/ T o
fluctuation rate than Inter frames, whil€ (n) is the smoothest Maximum Completion Time, Tc
signal, since it is generated as the average of all types of frames
within a GOP period. The lower fluctuation rate of Intra framesio- 12. Effect of the prediction performance with respect to the maximum
. . . .completion timeT..
than that of Inter ones is due to the coding algorithm. In partic-
ular, Intra frames are coded only in spatial direction while Inter
frames both in spatial and the temporal one. For this reason, thain bottleneck for the online traffic prediction; a) they should
average frame rate of Inter frames is smaller than of Intra onég. predicted in within a short time interval (less than 40 ms)
However, in cases of high video activity the motion estimatioand b) they are highly fluctuated and thus it is more difficult
algorithm fails and Inter framedand B) are coded similarly to be predicted. However, as presented in Fig. 12, evemfor
to the Intra ones. Thus, the Inter frame’s traffic rate is highliyames, the prediction performance remains satisfactory though
fluctuated compared to the Intra ones. Furthermédtames a small number of iterations is allowed. This is due fact that
present the lowest average rate since their motion vectors #reweight updating algorithm starts, according to equation (10),
bidirectionally estimated with respect to the previous or the falrom an initial “good” feasible solution, which provides a min-
lowing (or an interpolation between them)r P frame. This imal modification of the network weights, instead of a random
is verified in Figs. 7-9, where it is observed that the rate/forone. Therefore, even within few iterations, a satisfactory solu-
frames ranges from about 10 Mbits/s to 35 Mbits/s (3.5 timedion is obtained.
while for P and B from 3 Mbits/s to 22 Mbits/s (7.33 times) 1) Comparison With Other Linear and Nonlinear Tech-
and from 0.8 Mibts/s to 11 Mbits/s (13.75 times). nigues: In the following, the performance of the proposed
Due to the coding algorithnt, frames are generated withoutmodel as traffic rate predictor is compared with three other
respect to any previous frame and thus, they present lower corethods. The first uses a recursive implementation of a
relation compared to Inter frames. As a result, one would expdicear AR model [23], the second a recurrent neural-network
to present higher prediction error than that of Inter frames. Howrchitecture as in [25] and finally the third a feedforward
ever, the fluctuation rate of Inter frames is much higher than néural network without the weight updating mechanism [24].
intra ones, which mainly affect the prediction accuracy. Insteatible Ill presents the results obtained for theP, B frame
within a simple scene with low video activity, Inter frames castreams and signat®(n), using the three aforementioned
be predicted more accurately verifying the previous observationethods. As is observed, the proposed model provides the
As we have stated in Section IlI-C, the number of iteratiorfsest prediction performance in all cases, while the recurrent
for updating neural-network weights depends on a maximumeural-network approach [25] the second one. This is due to
permitted timeT,. which should be smaller than time intervathe fact that the first method uses a linear model (although its
Tp between two successive frames of the same type so thattbeursive implementation) to predict the MPEG video traffic,
traffic management algorithms exploit the prediction results hwyhile the third does not update the network weights during
regulating, for example, if necessary, network parameters. Tir@diction. To clearly illustrate the differences of the proposed
effect of timeT. on the prediction accurack® is illustrated method from the second best technique, i.e., the recurrent
in Fig. 12 for I, P, and B frames. As is observed, the predicnheural-network approach [25], a rate by rate comparison is
tion performance deteriorates as tirig becomes shortelB3  depicted in Fig. 13(a)—(c) over a time window of the first 125
frames present the greatest variation and therefore presentftames as in Figs. 7-9 in case bf P and B frame stream of

Prediction Error (%)
w H W [=.Y

1]
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Source3. Similarly, Fig. 13(d) presents the comparison betweairrent approach presents an unstable behavior especially when
the proposed method and the recurrent one for sighAah) applied for long traffic periods.
over the same time window as in Fig. 10. _ . _

Arecurrent neural-network models an NARNJA ¢), where B. Offline Traffic Modeling
p is the order of the autoregressive term whildne order of the  In this section, the off line traffic modeling is evaluated using
moving average component. Instead, the proposed model ifata of Source3 and Source4 which have been excluded from
plements an adaptable feedforward neural-network architectte training set.
and thus simulates an NAR system in an recursive mode, defig. 14 presents the frame loss probability, obtained from the
noted as RNAR. The MA component of a recurrent architectupeoposed traffic model (dotted line), versus buffer size, along
cannot be removed by setting the ordet= 0, since it stems with those obtained by varying the rate of real data of Source3
from the feedback between the output and input [27]. The re-1% for N = 20 multiplexed video sources. It should be men-
current neural-network model cannot be efficiently track highlifoned that in this figure, the buffer size is expressed in time units
fluctuated rates as it happens in the examined VBR MPEG vidgas), which correspond to the maximum delay that the buffer
sources. This is clearly noticed in Fig. 13. Particularly, we olgauses. In Fig. 14, we observe that the traffic model provides a
served that the prediction accuracy of té(n) signal, which good approximation of frame loss probability at two different
is the average over a GOP period, and thus presents the lovekgjrees of utilization, 75%, and 85%. In this figure, we also de-
fluctuation, is more accurate than that of Inter and Intra framesict the frame loss probability obtained by applying two other
Additionally, the highest prediction error is noticed for tBe methods. The first uses linear AR models for theP, and B
frames (see Table ) since they are highly fluctuated. Insteadgames. This is mentioned as “Linear Case” in the figure. In the
the proposed adaptable neural-network model tracks well tdecond approach, frame loss probability is provided without im-
traffic rates even at highly fluctuated rates, as shown in Table Ijlementing the algorithm, described in Section V (mentioned as
The adopted recursive algorithm trusts the current traffic datdodel without GRNN” in the figure). As is observed, the linear
as much as possible meaning that the model is adapted to ¢hse significantly underestimates frame loss probability, espe-
current traffic statistics as indicated by the constraint [equatieially at large buffer size. Instead, the second method results in
(9b)], while simultaneously provides a minimum degradatioa slight underestimate of frame losses, since high traffic rates
of the previous network knowledge. In contrast, the recurrept I, P, andB frames cannot be estimated with high accuracy.
model adapts network weights at each sample toward the oppiy. 15 presents the performance of the proposed model for data
site direction of the current prediction error. Furthermore, the ref Source4 within at1% uncertainty, in case df = 20 mul-
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TABLE IV
COMPARISON OFFRAME LOSSES FOR THEACTUAL DATA OF SOURCE3 AND THE PROPOSEDMODEL AT DIFFERENTBUFFER SIZES AND UTILIZATION DEGREES

Frame Loss Probabilities

Source | Starting Starting 44ms & U=85% 59ms & U=85% 29ms & U=80 35ms & U=80%

Frame Time (ms) Data Model Data Model Data Model Data Model
1 1 20.9286 - -4.6 - - - - - -
2 130 35.4815 - - - - - - -4.27 -4.13
3 10982 29.8838 -4.38 -4.06 -4.55 -4.3 -4.37 -4.55 -4.05 -3.90
4 1090 10.0323 -4.32 -4.58 -4.6 - -4.56 -4.42 - -
5 11656 12.7993 -3.62 -3.7 -3.92 -3.85 -3.90 -3.76 -2.93 -2.76
6 7117 33.0114 -4.14 -4.11 -4.39 -4.38 -4.07 -4.39 -3.27 -3.34
7 17595 36.0766 -4.57 -4.54 - - -4.6 - -4.15 -4.17
8 6415 3.0171 -4.02 -4.28 -4.43 -4.6 -4.43 -4.56 -2.67 -2.87
9 22948 32.0337 -3.52 -3.95 -4.12 -4.38 -3.95 -3.65 -2.59 -2.68
10 31126 5.6047 -4.6 -4.52 -4.6 -4.53 -4.55 -4.6 -3.64 -3.56
11 9004 3.5876 -4.08 -3.99 -4.23 -4.48 -3.95 -4.15 -3.08 -3.43
12 14558 28.6451 -3.88 -4.11 -4.47 -4.42 -4.24 -4.27 -3.14 -3.2
13 3571 39.9001 -4.32 -4.16 -4.38 -4.38 -4.6 - -4.05 -3.78
14 22879 9.6458 - -4.6 - -4.6 - - -4.07 -3.816
15 18492 28.3909 -4.14 -3.86 -4.06 -4.13 -4.43 -4.37 -3.06 -3.42

tiplexed sources. As can be seen, the loss rates provided byahd 35 ms in case df = 80%. It is observed that the model
model fall within the range of-1% uncertainty for almost all approximates well not only the aggregate traffic intensity, but
delays. also the traffic characteristics of each of the first 15 individual
Table IV depicts a source by source comparison of franmultiplexed sources. In this table, the periodicity effect is also
losses for the actual data of Source3 and the proposed maagtient [13]. According to this phenomenon, although all mul-
for delays, 44 ms and 59 ms, in caseldf= 85% and 29 ms tiplexed sources present the same statistical properties, they are
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Fig. 16. (a) Frame loss probability versus buffer size of SourceBfer 75%. (b) Delay versus utilization for @& frame losses. (c) Delay versus number of
multiplexed forU = 75%.

characterized by different loss rates. A video source that starentional training schemes (like the backpropagation), which
its transmission a short time after another source, will presargually induce high computational load. This is an important
much more losses since frames from this source are more likedgue for online applications, such as traffic prediction of MPEG
to face larger queue lengths than frames arriving earlier frdname rates. The proposed adaptive neural-network scheme has
other sources. been applied for traffic prediction (online modeling) and offline
The effect of the number of multiplexed sources on networkodeling of real-life MPEG coded video sources. In particular,
resources is depicted in Fig. 16(a). In this figure, frame lossfs the problem of online traffic modeling, experimental results
are plotted versus buffer size for three different number of mulénd comparative study with other linear and nonlinear traffic
plexed sources (15, 20, and 25) and utilization of 75% using daedels have shown the superiority of the proposed scheme. For
of Source3, along with those obtained by the proposed modile problem of offline traffic modeling, the proposed algorithm
We observe that loss rates decay more rapidly as the numbave been tested in a wide range of utilizations, number of mul-
of multiplexed sources increase. Furthermore, the model ptgglexed sources and delay, and the results have shown that the
vides a very good approximation of frame losses in all casesheme is very robust and provides better performance com-
The delay versus utilization for different number of multiplexe@ared to traditional linear “offline” traffic models.
sources is depicted in Fig. 16(b) for the same video sequenceQther types of video coding schemes than the examined
when the frame loss rate is equal to20In this figure, we have MPEG one can also be modeled by the proposed adaptive
depicted the delay provided by the model for the same loss rateural-network architecture. In this case, the model order and
Fig. 16(c) shows the delay versus the number of multiplex¢ide learning set used to initially train the network should be
sources for three different loss ratd9—*, 10~° and 16°) in  changed. Instead, the proposed adaptive algorithm remains the
case ofU = 75%. In the same figure, data obtained from theame. It should be also mentioned that the process of applying
proposed model are also depicted. From the previous resultsee traffic models to each of three types of frames of the
we can see that delay and frame losses are regulated by utiliZlrEG coding schemel( P, and B) is not valid for other

tion and number of multiplexed sources. coding schemes since in this case different frame types are
presented.
VIl. CONCLUSION
The demands of multimedia services and especially of digital APPENDIX A
video rapidly increase in the recent years. Since video data PROOF OFTHEOREM 1

demand large bandwidth requirements, even in compresse
dom_ain, _traffic_ characterization and_ modeling of such ki_nd F‘ne network weights and biases, which connectithenidden
servicesisan |mport_ant issue for efficient ne_twork operatlon. ron to the input laydreforeandafter the weight adaptation
this Paper, an "".d"’.‘pt"’e neural—ne_twork architecture is prqpoﬁéjpectively. Then, matricd¥ ,, W, can be formed as follows:
for traffic prediction and modeling of MPEG coded video
sources. The scheme is based on an efficient recursive weight
estimation algorithm, which adapts the network response to W, =[Wi,a W2 - Wi 4]
current conditions. In particular, the weights are updated so thgig
1) the network output, after the adaptation, is approximately
equal to the current data (traffic rates) and 2) a minimal
degradation over the obtained network knowledge is provided.
It has been shown that the proposed adaptive neural-netwsitilarly to matrix W of Section 1I-B. Let us also define by
architecture simulates a RNAR model. vy, v, thel x 1 vectors which contain the network weights
The proposed recursive weight adaptation is performed éonnecting theth hidden neuron to the output neurbafore
an efficient and cost effective manner in contrast to other coand after the weight adaptation respectively. Similardy, 6,

fetus define byw, 1, w; . the(p+1) x 1 vectors containing

Wy =[Wi, Wop - - W) (AL)
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correspond to the biases of the output neuron. Since (7a) ané&quation (A11) is a linear equation with respect to weights
(7b) is valid for all network weights, it can be derived that  incrementAw and vector can be estimated by simply identi-
fying the terms of the right and left hand of (A11). Particularly,

W, =W, +AW, v,=v,+Av, 0,=0,+A0 (A2) Wwe have that

T

whereAW, Av, andAd are smallincrements of the respective @ = [vec {r-x(k — 1)"} u,(x(k — 1)) 1] (A12)
network weights.
Thus, (3) can be written as withr = Q-v;, andvec{r-x(k—1)T} denoting a vector formed
by stacking up all rows of matrix - x(k — 1)7.
u,(x(k — 1)) = £ (W; -x(k— 1)+ AW" - x(k — 1))
(A3) APPENDIX B
where subscripb and a refer to beforeand after the weight PROOF OFTHEOREM 2
adaptation, respectively. _ _ The effect of perturbatiodw in (6a) can be modeled by [32]
Application of a first-order Taylor series expansion to (A3)
yields to N,
> AD;,=s""s (B1)
u, (x(k—-1)) = f (W} - x(k—1))+QAW" x(k—1) (A4) i=1

whereQ is the gradient of (-) and can be expressed by thé(vhere AD; , is the sensitivity of the squared error of the

following diagonal matrix ith element ofS,, Diy = (di — yw,(t:)* [(62)] and
s = [ADy, ADs -+~ ADy, )" an N, x 1 vector con-
taining the sensitivities for all elements §f. The sensitivity

Q = diag{or s (x(k = 1)), s dp(x(k = 1)} (AS) o errorsD; ;, can be expressed as

where oD; oD; oD;
ADiy =Y 220 Aw; L Avg + 2 A
T2 Guy, w%”; oy ST g A0
bi,p(%(k = 1)) = wi,p(x(k = 1)) - [1 = wi p(x(k — 1))] (A6) g (B2)
o ] . _Using (B2) for all elements i¥,, 2 = 2, ..., N,, vectors can
|nd|c§te th_e gradient of the h|.dde_n neuron outputs, assuming that \ritten as
the sigmoid are used as activation functions.
Since the network output is approximately equal to the cur- s=J-Aw (B3)
rent bit rate, i.e.yw, (x(k — 1)) = z(k), from (2a) and (A4) is
expressed as follows: whereJ is the Jacobian matrix of errod9; , with respect to
network weights
f— T. o T. J—
xz(k) = v, ug(x(k—1))+Av" u,(x(k—=1))+60,+A6. (A7) 9Dy 9Dy, 9Dy 1
Combining, (A7) and (A4), and ignoring the second order terms, O,k vy 06
we can find that L 9Day o 0Dy ODan
J — (’)wm k avk 09 . (84)
w(k) = vy ~wp(x(k—1)) =0y =v; -Q-AWT : : : :
T : : : :
X(k—1)+AV ub(X(k—l))‘i‘AH (A8) ODNl”b ODNb,b 0D]\/'b,b
L 871}% k 8’Uk lol7} J

Equation (A7) can be rewritten as
The derivatives involved in (B4) are calculated as follows.

b=al- -Aw (A9) Let us first define agy; the difference between the target
output and the network output for tlith element of se$; (old
where information) in case that the old weights are used
b=a(k) — vl -up(x(k—1)) — 0, = 2(k) —2(k) (A10) gi = (di — Yw, (ti)). (BS)

is the prediction error before the weight adaptation, while vectorLet us also recall that
a is produced by reordering the right term of (A7) for all net-
work Weights (52'(17]') = ui,b(tj) . (1 — ’U,Z"b(tj)) (86)

al " Aw = vl -Q-AWT .x(k—1)+AvT .uy(x(k—1))+Af. is the derivative of théth hidden neuron output when vectgr
(A1l) is fed as input to the network using the old weights, Dif-
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ferentiating (6a) with respect to network weights ,, we have  [17] D. Heyman and T. V. Lakshman, “Sources models for VBR broadcast

that

video traffic,”|IEEE/ACM Trans. Networkingol. 4, pp. 40-48, 1996.
[18] O. Rose, “Statistical properties of MPEG video traffic and their impact
OD: on traffic modeling in ATM systems,” ifProc. 20th Conf Local Com-
6b —gi ;- 5k(tz’) “ti e (B7) puter NetworksMinneapolis, MN, Oct. 16-19, 1995, pp. 397-406.
Owj,k 1 ’ [19] M. R. Grasse, J. F. Frater, and —PLEASE LIST FIRST INITIAL—
Arnold, “Traffic characteristics of MPEG-2 variable bit rate video,” in

whereti, . is thekth element of vectot;. We recall thatll)m A Proc. Australian Telecommunication Networks Application Cérec.

1994, pp. 473-478.

refers to the network weight that connects fttehidden neuron (2] A b. Doulamis, N. D. Doulamis, G. E. Konstantoulakis, and G. I.
with the kth input element. The equation (6a) with respect to  Stassinopoulos, “Traffic characterization and modeling of VBR coded
network weights;, andé, we find that MPEG sources,IFIP ATM Networksvol. 3, pp. 60-80, 1997.

[21] D. P. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical analysis
of MPEG-2 coded VBR video traffic,” ifPacket Video'94B2.1.

aD; [22] N. Doulamis, A. Doulamis, G. Konstantoulakis, and G. Stasinopoulos,
76 —gi - Uk (tz) (B8) “Efficient modeling of VBR MPEG-1 video sourcedEEE Trans. Cir-
vy, cuits Syst. Video Technplol. 10, pp. 93-112, Feb. 2000.
[23] S. Haykin,Adaptive Filter Theory Upper Saddle River, NJ: Prentice-
9Di.p Hall, 1996.
b — g, (B9) ,
o6 Jt [24] S.Chong, S. Q. Li, and J. Ghosh, “Predictive dynamic bandwidth alloca-

tion for efficient transport of real time VBR over ATM|EEE J. Select.
Areas Communvol. 13, pp. 12-33, Jan. 1995.

Using (B1) and (B3), minimization of (6a) is equivalent to [25] P.-R. Chang and J.-T. Hu, “Optimal nonlinear adaptive prediction and
minimization of modeling of MPEG video in ATM networks using pipelined recurrent
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(5]

(6]
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[10]
(11]

[12]
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[15]

(16]
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[26] S. Haykin, Neural Networks: A Comprehensive FoundatioMNew
.1 T T York: Macmillan, 1994.
min 5 Aw® - J° - J - Aw. (B10) [27] J. Connor, D. Martin, and L. Altas, “Recurrent neural networks and ro-
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